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Chapter 1

Introduction

SiFive’s S54 Core Complex is a high performance implementation of the RISC‑V RV64IMAFDC

architecture. The SiFive S54 Core Complex is guaranteed to be compatible with all applicable

RISC‑V standards, and this document should be read together with the official RISC‑V user-

level, privileged, and external debug architecture specifications.

A summary of features in the S54 Core Complex can be found in Table 1.

S54 Core Complex Feature Set

Feature Description

Number of Harts 1 Hart.

S54 Core 1× S54 RISC‑V core.

Local Interrupts 16 Local Interrupt signals per hart which can be connected to

off core complex devices.

PLIC Interrupts 127 Interrupt signals which can be connected to off core

complex devices.

PLIC Priority Levels The PLIC supports 7 priority levels.

Hardware Breakpoints 2 hardware breakpoints.

Physical Memory Protection

Unit

PMP with 8 x regions and a minimum granularity of 4 bytes.

Table 1: S54 Core Complex Feature Set

1.1 S54 Core Complex Overview

An overview of the SiFive S54 Core Complex is shown in Figure 1. This RISC-V Core IP

includes 1 x 64-bit RISC‑V core, including local and global interrupt support, and physical mem-

ory protection. The memory system consists of Data Tightly-Integrated Memory and Instruction

Tightly-Integrated Memory. The S54 Core Complex also includes a debug unit, one incoming

Port, and two outgoing Ports.

4



Figure 1: S54 Core Complex Block Diagram

The S54 Core Complex memory map is detailed in Chapter 4, and the interfaces are described

in full in the S54 Core Complex User Guide.

1.2 S54 RISC‑V Core

The S54 Core Complex includes a 64-bit S54 RISC‑V core, which has a high-performance sin-

gle-issue in-order execution pipeline, with a peak sustainable execution rate of one instruction

per clock cycle. The S54 core supports Machine and User privilege modes as well as standard

Multiply, Single-Precision Floating Point, Double-Precision Floating Point, Atomic, and Com-

pressed RISC‑V extensions (RV64IMAFDC).

The core is described in more detail in Chapter 3.

1.3 Debug Support

The S54 Core Complex provides external debugger support over an industry-standard JTAG

port, including 2 hardware-programmable breakpoints per hart.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 5



Debug support is described in detail in Chapter 8, and the debug interface is described in the

S54 Core Complex User Guide.

1.4 Interrupts

The S54 Core Complex supports 16 high-priority, low-latency local vectored interrupts per-hart.

This Core Complex includes a RISC-V standard platform-level interrupt controller (PLIC), which

supports 127 global interrupts with 7 priority levels.

This Core Complex also provides the standard RISC‑V machine-mode timer and software inter-

rupts via the Core-Local Interruptor (CLINT).

Interrupts are described in Chapter 5. The CLINT is described in Chapter 6. The PLIC is

described in Chapter 7.

1.5 Memory System

The S54 Core Complex memory system has a Level 1 memory system optimized for high per-

formance. The instruction subsystem consists of a 16 KiB 2-way instruction cache with the abil-

ity to reconfigure a single way into a fixed-address tightly integrated memory. The data subsys-

tem allows for a maximum DTIM size of 64 KiB.

The memory system is described in more detail in Chapter 3.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 6



Chapter 2

List of Abbreviations and Terms
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Term Definition

BHT Branch History Table

BTB Branch Target Buffer

RAS Return-Address Stack

CLINT Core-Local Interruptor. Generates per-hart software interrupts and timer

interrupts.

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core

local interrupts.

hart HARdware Thread

DTIM Data Tightly Integrated Memory

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.

PMP Physical Memory Protection

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a

RISC-V system.

TileLink A free and open interconnect standard originally developed at UC Berke-

ley.

RO Used to describe a Read Only register field.

RW Used to describe a Read/Write register field.

WO Used to describe a Write Only registers field.

WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI Writes-Preserve Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 8



Chapter 3

S54 RISC-V Core

This chapter describes the 64-bit S54 RISC‑V processor core used in the S54 Core Complex.

The S54 processor core comprises an instruction memory system, an instruction fetch unit, an

execution pipeline, a floating-point unit, a data memory system, and support for local interrupts.

The S54 feature set is summarized in Table 2.

Feature Description

ISA RV64IMAFDC.

Instruction Cache 16 KiB 2-way instruction cache.

Instruction Tightly Integrated Memory The S54 has support for an ITIM with a maxi-

mum size of 8 KiB.

Data Tightly Integrated Memory 64 KiB DTIM.

Modes The S54 supports the following modes:

Machine Mode, User Mode.

Table 2: S54 Feature Set

3.1 Instruction Memory System

The instruction memory system consists of a dedicated 16 KiB 2-way set-associative instruction

cache. The access latency of all blocks in the instruction memory system is one clock cycle. The

instruction cache is not kept coherent with the rest of the platform memory system. Writes to

instruction memory must be synchronized with the instruction fetch stream by executing a

FENCE.I instruction.

The instruction cache has a line size of 64 bytes, and a cache line fill triggers a burst access

outside of the S54 Core Complex. The core caches instructions from executable addresses,

with the exception of the Instruction Tightly Integrated Memory (ITIM), which is further described

in Section 3.1.1. See the S54 Core Complex Memory Map in Chapter 4 for a description of exe-

cutable address regions that are denoted by the attribute X.

Trying to execute an instruction from a non-executable address results in a synchronous trap.
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3.1.1 I-Cache Reconfigurability

The instruction cache can be partially reconfigured into ITIM, which occupies a fixed address

range in the memory map. ITIM provides high-performance, predictable instruction delivery.

Fetching an instruction from ITIM is as fast as an instruction-cache hit, with no possibility of a

cache miss. ITIM can hold data as well as instructions, though loads and stores from a core to

its ITIM are not as performant as loads and stores to its Data Tightly Integrated Memory (DTIM).

The instruction cache can be configured as ITIM for all ways except for 1 in units of cache lines

(64 bytes). A single instruction cache way must remain an instruction cache. ITIM is allocated

simply by storing to it. A store to the nth byte of the ITIM memory map reallocates the first n+1

bytes of instruction cache as ITIM, rounded up to the next cache line.

ITIM is deallocated by storing zero to the first byte after the ITIM region, that is, 8 KiB after the

base address of ITIM as indicated in the Memory Map in Chapter 4. The deallocated ITIM space

is automatically returned to the instruction cache.

For determinism, software must clear the contents of ITIM after allocating it. It is unpredictable

whether ITIM contents are preserved between deallocation and allocation.

3.2 Instruction Fetch Unit

The S54 instruction fetch unit contains branch prediction hardware to improve performance of

the processor core. The branch predictor comprises a 28-entry branch target buffer (BTB) which

predicts the target of taken branches, a 512-entry branch history table (BHT), which predicts the

direction of conditional branches, and a 6-entry return-address stack (RAS) which predicts the

target of procedure returns. The branch predictor has a one-cycle latency, so that correctly pre-

dicted control-flow instructions result in no penalty. Mispredicted control-flow instructions incur a

three-cycle penalty.

The S54 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions.

3.3 Execution Pipeline

The S54 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:

instruction fetch, instruction decode and register fetch, execute, data memory access, and regis-

ter writeback.

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed

so that most instructions have a one-cycle result latency. There are several exceptions:

• LW has a two-cycle result latency, assuming a cache hit.

• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

• CSR reads have a three-cycle result latency.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 10



• MUL, MULH, MULHU, and MULHSU have a 1-cycle result latency.

• DIV, DIVU, REM, and REMU have between a 2-cycle and 64-cycle result latency, depending

on the operand values.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The S54 implements the standard Multiply (M) extension to the RISC‑V architecture for integer

multiplication and division. The S54 has a 64-bit per cycle hardware multiply and a 1-bit per

cycle hardware divide. The multiplier can only execute one operation at a time and will block

until the previous operation completes.

The hart will not abandon a Divide instruction in flight. This means if an interrupt handler tries to

use a register that is the destination register of a divide instruction the pipeline stalls until the

divide is complete.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-

predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps

incur a three-cycle penalty.

Most CSR writes result in a pipeline flush with a five-cycle penalty.

3.4 Data Memory System

The S54 data memory system consists of a DTIM interface, which supports up to 64 KiB. The

access latency from a core to its own DTIM is two clock cycles for full words and three clock

cycles for smaller quantities. Misaligned accesses are not supported in hardware and result in a

trap to allow software emulation.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

3.5 Atomic Memory Operations

The S54 core supports the RISC‑V standard Atomic (A) extension on the DTIM and the Periph-

eral Port. Atomic memory operations to regions that do not support them generate an access

exception precisely at the core.

The load-reserved and store-conditional instructions are only supported on cached regions,

hence generate an access exception on DTIM and other uncached memory regions.

See The RISC‑V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1 for more infor-

mation on the instructions added by this extension.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 11



3.6 Floating-Point Unit (FPU)

The S54 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for

32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined

fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators,

and float-to-integer conversion units, all with full hardware support for subnormals and all IEEE

default values.

3.7 Local Interrupts

The S54 supports up to 16 local interrupt sources that are routed directly to the core. See Chap-

ter 5 for a detailed description of Local Interrupts.

3.8 Supported Modes

The S54 supports RISC‑V user mode, providing two levels of privilege: machine (M) and user

(U). U-mode provides a mechanism to isolate application processes from each other and from

trusted code running in M-mode.

See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

3.9 Physical Memory Protection (PMP)

The S54 includes a Physical Memory Protection (PMP) unit compliant with The RISC‑V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Version 1.10. PMP can be used to set mem-

ory access privileges (read, write, execute) for specified memory regions. The S54 PMP sup-

ports 8 regions with a minimum region size of 4 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the S54. The

definitive resource for information about the RISC‑V PMP is The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

3.9.1 Functional Description

The S54 includes a PMP unit, which can be used to restrict access to memory and isolate

processes from each other.

The S54 PMP unit has 8 regions and a minimum granularity of 4 bytes. Overlapping regions are

permitted. The S54 PMP unit implements the architecturally defined pmpcfgX CSR pmpcfg0

supporting 8 regions. pmpcfg1, pmpcfg2, and pmpcfg3 are implemented but hardwired to zero.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on U-mode accesses. However, locked regions (see Section 3.9.2) additionally

enforce their permissions on M-mode.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 12



3.9.2 Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpicfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on M-Mode accesses. When the L bit is clear, the R/W/X permissions apply only to U-

mode.

3.10 Hardware Performance Monitor

The S54 Core Complex supports a basic hardware performance monitoring facility compliant

with The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10. The

mcycle CSR holds a count of the number of clock cycles the hart has executed since some

arbitrary time in the past. The minstret CSR holds a count of the number of instructions the

hart has retired since some arbitrary time in the past. Both are 64-bit counters.

The hardware performance monitor includes two additional event counters, mhpmcounter3 and

mhpmcounter4. The event selector CSRs mhpmevent3 and mhpmevent4 are registers that con-

trol which event causes the corresponding counter to increment. The mhpmcounters are 40-bit

counters.

The event selectors are partitioned into two fields, as shown in Table 3: the lower 8 bits select

an event class, and the upper bits form a mask of events in that class. The counter increments if

the event corresponding to any set mask bit occurs. For example, if mhpmevent3 is set to

0x4200, then mhpmcounter3 will increment when either a load instruction or a conditional

branch instruction retires. An event selector of 0 means "count nothing."

Note that in-flight and recently retired instructions may or may not be reflected when reading or

writing the performance counters or writing the event selectors.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 13



Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpeventX[7:0] = 0

Bits Meaning

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

19 Floating-point load instruction retired

20 Floating-point store instruction retired

21 Floating-point addition retired

22 Floating-point multiplication retired

23 Floating-point fused multiply-add retired

24 Floating-point division or square-root retired

25 Other floating-point instruction retired

Microarchitectural Events , mhpeventX[7:0] = 1

Bits Meaning

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

18 Floating-point interlock

Memory System Events, mhpeventX[7:0] = 2

Bits Meaning

8 Instruction cache miss

9 Memory-mapped I/O access

Table 3: mhpmevent Register Description

Copyright © 2018–2019, SiFive Inc. All rights reserved. 14



Chapter 4

Memory Map

The memory map of the S54 Core Complex is shown in Table 4.

Base Top Attr. Description Notes

0x0000_0000 0x0000_0FFF RWX A Debug

0x0000_1000 0x01FF_FFFF Reserved

Debug Address

Space

0x0200_0000 0x0200_FFFF RW A CLINT

0x0201_0000 0x07FF_FFFF Reserved

0x0800_0000 0x0800_3FFF RWX A ITIM (16 KiB)

0x0800_4000 0x0BFF_FFFF Reserved

0x0C00_0000 0x0FFF_FFFF RW A PLIC

0x1000_0000 0x1FFF_FFFF Reserved

On Core Complex

Devices

0x2000_0000 0x3FFF_FFFF RWX A Peripheral Port

(512 MiB)

0x4000_0000 0x5FFF_FFFF RWX System Port

(512 MiB)

0x6000_0000 0x7FFF_FFFF Reserved

Off Core Complex

Address Space for

External I/O

0x8000_0000 0x8000_FFFF RWX A Data Tightly-Inte-

grated Memory

(DTIM) (64 KiB)

0x8001_0000 0xFFFF_FFFF Reserved

0x1_0000_0000 0xF_FFFF_FFFF RWX A Peripheral Port

(60 GiB)

0x10_0000_0000 0xFF_FFFF_FFFF RWX System Port

(960 GiB)

On Core Complex

Address Space

Table 4: S54 Core Complex Memory Map. Memory Attributes: R - Read, W - Write, X - Exe-

cute, C - Cacheable, A - Atomics
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Chapter 5

Interrupts

This chapter describes how interrupt concepts in the RISC‑V architecture apply to the S54 Core

Complex.

The definitive resource for information about the RISC‑V interrupt architecture is The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

5.1 Interrupt Concepts

The S54 Core Complex supports Machine Mode interrupts. It also has support for the following

types of RISC‑V interrupts: local and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This

allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-

vice a given request and no additional memory accesses are required to determine the cause of

the interrupt.

Software and timer interrupts are local interrupts generated by the Core-Local Interruptor

(CLINT).

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),

which can direct interrupts to any hart in the system via the external interrupt. Decoupling global

interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting

a broad range of attributes like the number of interrupts and the prioritization and routing

schemes.

This chapter describes the S54 Core Complex interrupt architecture.

Chapter 6 describes the Core-Local Interruptor.

Chapter 7 describes the global interrupt architecture and the PLIC design.

The S54 Core Complex interrupt architecture is depicted in Figure 2.
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Figure 2: S54 Core Complex Interrupt Architecture Block Diagram.

5.2 Interrupt Operation

If the global interrupt-enable mstatus.MIE is clear, then no interrupts will be taken. If

mstatus.MIE is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-

rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect

the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is

cleared.

5.2.1 Interrupt Entry and Exit

When an interrupt occurs:

• The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

• The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 7.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-

tion to exit the handler. When an MRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 17



• The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC‑V interrupts are described in Sec-

tion 5.3.

5.3 Interrupt Control Status Registers

The S54 Core Complex specific implementation of interrupt CSRs is described below. For a

complete description of RISC‑V interrupt behavior and how to access CSRs, please consult The

RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

5.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the S54 Core Complex is provided in Table 5. Note that this is not a complete description of

mstatus as it contains fields unrelated to interrupts. For the full description of mstatus, please

consult the The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MIE RW Machine Interrupt Enable

[6:4] Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

[10:8] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Table 5: S54 Core Complex mstatus Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual

interrupt in the mie register, described in Section 5.3.3.

5.3.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and

setting the mode by which the S54 Core Complex will process interrupts. The interrupt process-

ing mode is defined in the lower two bits of the mtvec register as described in Table 7.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 18



Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the S54 Core Complex

supported modes is described in Table 7.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Requires

64-byte alignment.

Table 6: mtvec Register

MODE Field Encoding mtvec.MODE

Value Name Description

0x0 Direct All exceptions set pc to BASE

0x1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

mcause.EXCCODE.

≥ 2 Reserved

Table 7: Encoding of mtvec.MODE

See Table 6 for a description of the mtvec register. See Table 7 for a description of the

mtvec.MODE field. See Table 11 for the S54 Core Complex interrupt exception code values.

Mode Direct

When operating in direct mode all synchronous exceptions and asynchronous interrupts trap to

the mtvec.BASE address. Inside the trap handler, software must read the mcause register to

determine what triggered the trap.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 × exception code.

For example, if a machine timer interrupt is taken, the pc is set to mtvec.BASE + 0x1C. Typically,

the trap vector table is populated with jump instructions to transfer control to interrupt-specific

trap handlers.

In vectored interrupt mode, BASE must be 64-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus,

when interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global

interrupt.

Copyright © 2018–2019, SiFive Inc. All rights reserved. 19



5.3.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 8.

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

[6:4] Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

[10:8] Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[15:12] Reserved WPRI

16 LIE0 RW Local Interrupt 0 Enable

17 LIE1 RW Local Interrupt 1 Enable

18 LIE2 RW Local Interrupt 2 Enable

…

31 LIE15 RW Local Interrupt 15 Enable

[63:32] Reserved WPRI

Table 8: mie Register

5.3.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 9.

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

[2:0] Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

[6:4] Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

[10:8] Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[15:12] Reserved WIRI

16 LIP0 RO Local Interrupt 0 Pending

17 LIP1 RO Local Interrupt 1 Pending

18 LIP2 RO Local Interrupt 2 Pending

…

31 LIP15 RO Local Interrupt 15 Pending

[63:32] Reserved WIRI

Table 9: mip Register
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5.3.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous

exceptions, in which case the most-significant bit of mcause is set to 0.

See Table 10 for more details about the mcause register. Refer to Table 11 for a list of synchro-

nous exception codes.

Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[9:0] Exception Code WLRL A code identifying the last exception.

[62:10] Reserved WLRL

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 10: mcause Register
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Interrupt Exception Codes

Interrupt Exception Code Description

1 0–2 Reserved

1 3 Machine software interrupt

1 4–6 Reserved

1 7 Machine timer interrupt

1 8–10 Reserved

1 11 Machine external interrupt

1 12–15 Reserved

1 16 Local Interrupt 0

1 17 Local Interrupt 1

1 18–30 …

1 31 Local Interrupt 15

1 ≥ 32 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9–10 Reserved

0 11 Environment call from M-mode

0 ≥ 12 Reserved

Table 11: mcause Exception Codes

5.4 Interrupt Priorities

Local interrupts have higher priority than global interrupts. As such, if a local and a global inter-

rupt arrive at a hart on the same cycle, the local interrupt will be taken if it is enabled.

Priorities of local interrupts are determined by the local interrupt ID, with Local Interrupt 15 being

highest priority. For example, if both Local Interrupt 15 and Local Interrupt 14 arrive in the same

cycle, Local Interrupt 15 will be taken.

Local Interrupt 15 is the highest-priority interrupt in the S54 Core Complex. Given that Local

Interrupt 15’s exception code is also the greatest, it occupies the last slot in the interrupt vector

table. This unique position in the vector table allows for Local Interrupt 15’s trap handler to be

placed in-line, without the need for a jump instruction as with other interrupts when operating in

vectored mode. Hence, Local Interrupt 15 should be used for the most latency-sensitive inter-

rupt in the system for a given hart. Individual priorities of global interrupts are determined by the

PLIC, as discussed in Chapter 7.
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S54 Core Complex interrupts are prioritized as follows, in decreasing order of priority:

• Local Interrupt 15

• …

• Local Interrupt 0

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

5.5 Interrupt Latency

Interrupt latency for the S54 Core Complex is 4 cycles, as counted by the numbers of cycles it

takes from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of 3 cycles. This is a best

case cycle count and assumes the handler is cached or located in ITIM. It does not take into

account additional latency from a peripheral source.
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Chapter 6

Core-Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software

and timer interrupts. The S54 Core Complex CLINT complies with The RISC‑V Instruction Set

Manual, Volume II: Privileged Architecture, Version 1.10.

6.1 CLINT Memory Map

Table 12 shows the memory map for CLINT on SiFive S54 Core Complex.

Address Width Attr. Description Notes

0x2000000 4B RW msip for hart 0 MSIP Registers (1 bit wide)

0x2004008

…

0x200bff7

Reserved

0x2004000 8B RW mtimecmp for hart 0 MTIMECMP Registers

0x2004008

…

0x200bff7

Reserved

0x200bff8 8B RW mtime Timer Register

0x200c000 Reserved

Table 12: CLINT Register Map

6.2 MSIP Registers

Machine-mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. Each msip register is a 32-bit wide WARL register where the upper 31 bits are tied to

0. The least significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

ister are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as

harts may write each other’s msip bits to effect interprocessor interrupts.
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6.3 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the

rtc_toggle signal described in the S54 Core Complex User Guide. A timer interrupt is pending

whenever mtime is greater than or equal to the value in the mtimecmp register. The timer inter-

rupt is reflected in the mtip bit of the mip register described in Chapter 5.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.
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Chapter 7

Platform-Level Interrupt Controller

(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the S54

Core Complex. The PLIC complies with The RISC‑V Instruction Set Manual, Volume II: Privi-

leged Architecture, Version 1.10 and can support a maximum of 127 external interrupt sources

with 7 priority levels.

7.1 Memory Map

The memory map for the S54 Core Complex PLIC control registers is shown in Table 13. The

PLIC memory map has been designed to only require naturally aligned 32-bit memory

accesses.
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PLIC Register Map

Address Width Attr. Description Notes

0x0C00_0000 Reserved

0x0C00_0004 4B RW source 1 priority

…

0x0C00_01FC 4B RW source 127 priority

See Section 7.3 for more

information

0x0C00_0200

…

Reserved

0x0C00_1000 4B RO Start of pending array

…

0x0C00_100C 4B RO Last word of pending array

See Section 7.4 for more

information

0x0C00_1010

…

Reserved

0x0C00_2000 4B RW Start Hart 0 M-Mode interrupt

enables

…

0x0C00_200C 4B RW End Hart 0 M-Mode interrupt

enables

See Section 7.5 for more

information

0x0C00_2010

…

Reserved

0x0C20_0000 4B RW Hart 0 M-Mode priority

threshold

See Section 7.6 for more

information

0x0C20_0004 4B RW Hart 0 M-Mode claim/com-

plete

See Section 7.7 for more

information

0x0C20_0008

…

Reserved

0x1000_0000 End of PLIC Memory Map

Table 13: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

7.2 Interrupt Sources

The S54 Core Complex has 127 interrupt sources. These are exposed at the top level via the

global_interrupts signals. Any unused global_interrupts inputs should be tied to logic 0.

These signals are positive-level triggered.

In the PLIC, as specified in The RISC‑V Instruction Set Manual, Volume II: Privileged Architec-

ture, Version 1.10, Global Interrupt ID 0 is defined to mean "no interrupt," hence

global_interrupts[0] corresponds to PLIC Interrupt ID 1.
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7.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

priority register. The S54 Core Complex supports 7 levels of priority. A priority value of 0 is

reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest

active priority, and priority 7 is the highest. Ties between global interrupts of the same priority

are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.

See Table 14 for the detailed register description.

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 × Interrupt ID

Bits Field Name Attr. Rst. Description

[2:0] Priority RW X Sets the priority for a given global inter-

rupt.

[31:3] Reserved RO 0

Table 14: PLIC Interrupt Priority Registers

7.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 4 words of 32 bits. The pending bit for interrupt ID is stored in bit

of word . As such, the S54 Core Complex has 4 interrupt pending regis-

ters. Bit 0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-

ing a claim as described in Section 7.7.

PLIC Interrupt Pending Register 1 (pending1)

Base Address 0x0C00_1000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Pend-

ing

RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Pend-

ing

RO 0 Pending bit for global interrupt 1

2 Interrupt 2 Pend-

ing

RO 0 Pending bit for global interrupt 2

…

31 Interrupt 31 Pend-

ing

RO 0 Pending bit for global interrupt 31

Table 15: PLIC Interrupt Pending Register 1

Copyright © 2018–2019, SiFive Inc. All rights reserved. 28



PLIC Interrupt Pending Register 4 (pending4)

Base Address 0x0C00_100C

Bits Field Name Attr. Rst. Description

0 Interrupt 96 Pend-

ing

RO 0 Pending bit for global interrupt 96

…

31 Interrupt 127

Pending

RO 0 Pending bit for global interrupt 127

Table 16: PLIC Interrupt Pending Register 4

7.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enables registers.

The enables registers are accessed as a contiguous array of 4 × 32-bit words, packed the

same way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0

and is hardwired to 0.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.

PLIC Interrupt Enable Register 1 (enable1) for Hart 0 M-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Enable RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

…

31 Interrupt 31

Enable

RW X Enable bit for global interrupt 31

Table 17: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 4 (enable4) for Hart 0 M-Mode

Base Address 0x0C00_200C

Bits Field Name Attr. Rst. Description

0 Interrupt 96

Enable

RW X Enable bit for global interrupt 96

…

31 Interrupt 127

Enable

RW X Enable bit for global interrupt 127

Table 18: PLIC Interrupt Enable Register 4 for Hart 0 M-Mode
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7.6 Priority Thresholds

The S54 Core Complex supports setting of an interrupt priority threshold via the threshold reg-

ister. The threshold is a WARL field, where the S54 Core Complex supports a maximum

threshold of 7.

The S54 Core Complex masks all PLIC interrupts of a priority less than or equal to threshold.

For example, a threshold value of zero permits all interrupts with non-zero priority, whereas a

value of 7 masks all interrupts.

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0x0C20_0000

[2:0] Threshold RW X Sets the priority threshold

[31:3] Reserved RO 0

Table 19: PLIC Interrupt Threshold Register

7.7 Interrupt Claim Process

A S54 Core Complex hart can perform an interrupt claim by reading the claim/complete regis-

ter (Table 20), which returns the ID of the highest-priority pending interrupt or zero if there is no

pending interrupt. A successful claim also atomically clears the corresponding pending bit on

the interrupt source.

A S54 Core Complex hart can perform a claim at any time, even if the MEIP bit in its mip (Table

9) register is not set.

The claim operation is not affected by the setting of the priority threshold register.

7.8 Interrupt Completion

A S54 Core Complex hart signals it has completed executing an interrupt handler by writing the

interrupt ID it received from the claim to the claim/complete register (Table 20). The PLIC

does not check whether the completion ID is the same as the last claim ID for that target. If the

completion ID does not match an interrupt source that is currently enabled for the target, the

completion is silently ignored.
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PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0004

[31:0] Interrupt Claim/

Complete for Hart

0 M-Mode

RW X A read of zero indicates that no inter-

rupts are pending. A non-zero read

contains the id of the highest pending

interrupt. A write to this register signals

completion of the interrupt id written.

Table 20: PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode
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Chapter 8

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification 0.13. Currently only interactive debug and hardware breakpoints are sup-

ported.

8.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into

the CSR space as follows:

CSR Name Description Allowed Access Modes

tselect Trace and debug register select D, M

tdata1 First field of selected TDR D, M

tdata2 Second field of selected TDR D, M

tdata3 Third field of selected TDR D, M

dcsr Debug control and status register D

dpc Debug PC D

dscratch Debug scratch register D

Table 21: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.

8.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:
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Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

Table 22: tselect CSR

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

8.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying

bank of TDR registers by the tselect register.

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 23: tdata1 CSR

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

Table 24: tdata2/3 CSRs

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥ 3 Reserved

Table 25: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any
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attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

8.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification 0.13.

8.1.4 Debug PC dpc

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

8.1.5 Debug Scratch dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation 0.13.

8.2 Breakpoints

The S54 Core Complex supports two hardware breakpoint registers per hart, which can be flexi-

bly shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

Table 26: TDR CSRs when used as Breakpoints

8.2.1 Breakpoint Match Control Register mcontrol

Each breakpoint control register is a read/write register laid out in Table 27.
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Breakpoint Control Register (mcontrol)

Register Offset CSR

Bits Field

Name

Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on User Mode

4 S WARL X Address match on Supervisor Mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[17:12] action WARL 0 Breakpoint action to take. 0 or 1.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

Table 27: Test and Debug Data Register 3

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The bpaction field is an 8-bit read-write WARL field that specifies the available actions when

the address match is successful. The value 0 generates a breakpoint exception. The value 1

enters debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads/stores/instruction fetches, respectively, and all combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine/supervisor/user modes, respectively, and all combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered
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breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

Table 28: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

8.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-

cant address bits for address matching and also the unary-encoded address masking informa-

tion for NAPOT ranges.

8.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.
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Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.

8.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

8.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

8.3.1 Debug RAM and Program Buffer (0x300–0x3FF)

The S54 Core Complex has 16 32-bit words of program buffer for the debugger to direct a hart

to execute arbitrary RISC-V code. Its location in memory can be determined by executing aiupc

instructions and storing the result into the program buffer.

The S54 Core Complex has two 32-bit words of debug data RAM. Its location can be deter-

mined by reading the DMHARTINFO register as described in the RISC-V Debug Specification.

This RAM space is used to pass data for the Access Register abstract command described in

the RISC-V Debug Specification. The S54 Core Complex supports only general-purpose regis-

ter access when harts are halted. All other commands must be implemented by executing from

the debug program buffer.

In the S54 Core Complex, both the program buffer and debug data RAM are general-purpose

RAM and are mapped contiguously in the Core Complex memory space. Therefore, additional

data can be passed in the program buffer, and additional instructions can be stored in the debug

data RAM.

Debuggers must not execute program buffer programs that access any debug module memory

except defined program buffer and debug data addresses.

The S54 Core Complex does not implement the DMSTATUS.anyhavereset or

DMSTATUS.allhavereset bits.

8.3.2 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.
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8.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)

The flag registers in the debug module are used for the debug module to communicate with

each hart. These flags are set and read used by the debug ROM and should not be accessed

by any program buffer code. The specific behavior of the flags is not further documented here.

8.3.4 Safe Zero Address

In the S54 Core Complex, the debug module contains the address 0x0 in the memory map.

Reads to this address always return 0, and writes to this address have no impact. This property

allows a "safe" location for unprogrammed parts, as the default mtvec location is 0x0.
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