Copyright Notice

Copyright © 2017, SiFive Inc. All rights reserved.

Information in this document is provided as is, with all faults.

SiFive expressly disclaims all warranties, representations and conditions of any kind, whether express or implied, including, but not limited to, the implied warranties or conditions of merchantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation indirect, incidental, special, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.6</td>
<td>April 11, 2017</td>
<td>Some helpful hints for udev/screen</td>
</tr>
<tr>
<td>1.0.5</td>
<td>Jan 3, 2017</td>
<td>Corrections to udev rules</td>
</tr>
<tr>
<td>1.0.4</td>
<td>Dec 21, 2016</td>
<td>Corrections to Software Development Flow</td>
</tr>
<tr>
<td>1.0.3</td>
<td>Dec 19, 2016</td>
<td>Add Arduino IDE Instructions</td>
</tr>
<tr>
<td>1.0.2</td>
<td>Dec 10, 2016</td>
<td>Updates to match 1.0.2 of the MCS</td>
</tr>
<tr>
<td>1.0</td>
<td>Nov 29, 2016</td>
<td>First release</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>SiFive Freedom E310 Arty FPGA Dev Kit Getting Started Guide</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Required Hardware</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Xilinx Artix-7 35T Arty FPGA Evaluation Kit</td>
<td>1</td>
</tr>
<tr>
<td>1.2 USB A to Micro-B Cable</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Olimex ARM-USB-TINY-H Debugger</td>
<td>1</td>
</tr>
<tr>
<td>1.4 USB A to B Cable</td>
<td>1</td>
</tr>
<tr>
<td>1.5 Male-To-Female Jumper Cables (10)</td>
<td>2</td>
</tr>
<tr>
<td>2 Board Setup</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Connecting the USB Interface</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Connecting the Debugger</td>
<td>3</td>
</tr>
<tr>
<td>3 Freedom E310 Arty FPGA Flash Programming File</td>
<td>7</td>
</tr>
<tr>
<td>4 Boot and Run</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Terminal Log</td>
<td>12</td>
</tr>
<tr>
<td>5 Software Development Flow</td>
<td>13</td>
</tr>
<tr>
<td>5.1 Supported Platforms</td>
<td>13</td>
</tr>
<tr>
<td>5.2 Software Development with the Freedom E SDK</td>
<td>13</td>
</tr>
<tr>
<td>5.2.1 Compiling the Freedom E SDK Toolchain</td>
<td>13</td>
</tr>
<tr>
<td>5.2.2 Compiling Software Programs</td>
<td>14</td>
</tr>
<tr>
<td>5.2.3 Uploading Software Programs</td>
<td>14</td>
</tr>
<tr>
<td>5.2.4 Debugging Running Programs</td>
<td>14</td>
</tr>
<tr>
<td>5.3 Software Development Using the Arduino IDE</td>
<td>14</td>
</tr>
<tr>
<td>5.3.1 Installing the Freedom E310 Arty FPGA Dev Kit Board Package</td>
<td>15</td>
</tr>
<tr>
<td>5.3.2 Open Source Board Support Package Code</td>
<td>15</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Debugging Connections between Olimex ARM-USB-TINY-H and Arty Board's PMOD header JD ... 4
2.2 Debug Connections To the Olimex ARM-USB-TINY-H .. 4
2.3 Debug Connections to the Arty Board JD PMOD Header .. 4
2.4 Photo of the Arty Board showing USB and Debug Connections .. 5
5.1 Adding the SiFive Dev Kits Board URL to your Arduino IDE .. 16
5.2 Selecting Freedom E310 Arty FPGA Dev Kit in the Arduino IDE .. 17
Chapter 1

Required Hardware

The Freedom E310 Arty FPGA Dev Kit requires the following hardware:

1.1 Xilinx Artix-7 35T Arty FPGA Evaluation Kit

The Arty is a Xilinx FPGA development board for makers and hobbyists. It can be purchased from Digilent, Avnet, or Digi-Key.

https://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

1.2 USB A to Micro-B Cable

Any standard USB Type A Male to Micro-B Male cable can be used to interface with the Arty. Note that the Arty kit does not include one.

http://store.digilentinc.com/usb-a-to-micro-b-cable/

1.3 Olimex ARM-USB-TINY-H Debugger

The Olimex ARM-USB-TINY-H is a hardware JTAG debugger. The Freedom E310 Arty FPGA Dev Kit has a standard JTAG debugging interface, and the tools included with the Freedom E SDK have been tested using the Olimex ARM-USB-TINY-H. It can be purchased from Olimex or Digi-Key.

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/

1.4 USB A to B Cable

Any standard USB Type A Male to B Male cable can be used to interface to the Olimex ARM-USB-TINY-H Debugger. Note that the package does not include one. These are available from a variety of sources, including Digi-Key.
1.5 Male-To-Female Jumper Cables (10)

The connection between the Olimex ARM-USB-TINY-H and Freedom E310 Arty FPGA Dev Kit requires 10 connections. These can be made with Male-to-Female jumper cables. These cables are available from Adafruit in convenient rip-apart ribbon cables:
Chapter 2

Board Setup

2.1 Connecting the USB Interface
Connect the USB Type A to Micro-B cable between the USB-JTAG port (J10) of the Arty and the host machine. This provides UART console access to the Freedom E310 Arty FPGA Dev Kit as well as a 5V power source for the board. This is also the interface by which the FPGA fabric will be programmed.

2.2 Connecting the Debugger
The debugger is essential for downloading and debugging code to your SDK. The software will be downloaded to SPI Flash, so it will be retained. Without the debugger you can only flash the FPGA image and run the included demo program, you cannot change the software which executes.

Connect the Olimex ARM-USB-TINY-H with the USB Type A to B cable to the host machine. Then connect the Olimex ARM-USB-TINY-H debugger to PMOD header JD using the 10 jumper cables. The pinout is as shown in Figure 2.2. Note that the Olimex ARM-USB-TINY-H and the PMOD header on the Arty Board have different numbering schemes. Figures 2.2 and 2.2 clarify the different pinouts for the two connectors.

Figure 2.4 shows what the board looks like with all the debug connections in place.

Note: It is important to connect to PMOD header JD (not JA, JB, or JC). JD was selected over the other PMOD headers to avoid damage to the Arty board in the event of mismatched connections.
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>ARM-USB-TINY-H Pin Number</th>
<th>Suggested Jumper Color</th>
<th>Freedom E310 Arty Dev Kit JD Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREF</td>
<td>1</td>
<td>red</td>
<td>12</td>
</tr>
<tr>
<td>VREF</td>
<td>2</td>
<td>brown</td>
<td>6 ("VCC")</td>
</tr>
<tr>
<td>nTRST</td>
<td>3</td>
<td>orange</td>
<td>2</td>
</tr>
<tr>
<td>TDI</td>
<td>5</td>
<td>yellow</td>
<td>7</td>
</tr>
<tr>
<td>TMS</td>
<td>7</td>
<td>green</td>
<td>8</td>
</tr>
<tr>
<td>TCK</td>
<td>9</td>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>TDO</td>
<td>13</td>
<td>purple</td>
<td>1</td>
</tr>
<tr>
<td>GND</td>
<td>14</td>
<td>black</td>
<td>5 ("GND")</td>
</tr>
<tr>
<td>nRST</td>
<td>15</td>
<td>grey</td>
<td>9</td>
</tr>
<tr>
<td>GND</td>
<td>16</td>
<td>white</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 2.1: Debugging Connections between Olimex ARM-USB-TINY-H and Arty Board’s PMOD header JD

<table>
<thead>
<tr>
<th></th>
<th>1 : VREF (red)</th>
<th>2 : VREF (brown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 : nTRST (orange)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5 : TDI (yellow)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7 : TMS (green)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>NOTCH</td>
<td>9 : TCK (blue)</td>
<td>10</td>
</tr>
<tr>
<td>NOTCH</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13 : TDO (purple)</td>
<td>14 : GND (black)</td>
<td></td>
</tr>
<tr>
<td>15 : nRST (grey)</td>
<td>16 : GND (white)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>LED</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2: Debug Connections To the Olimex ARM-USB-TINY-H

<table>
<thead>
<tr>
<th></th>
<th>1 : TDO (purple)</th>
<th>7 : TDI (yellow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 : nTRST (orange)</td>
<td>8 : TMS (green)</td>
<td></td>
</tr>
<tr>
<td>3 : TCK (blue)</td>
<td>9 : nRST (grey)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>"GND"</td>
<td>5 : GND (black)</td>
<td>11 : GND (white)</td>
</tr>
<tr>
<td>"VCC"</td>
<td>6 : VREF (brown)</td>
<td>12 : VREF (red)</td>
</tr>
</tbody>
</table>

Figure 2.3: Debug Connections to the Arty Board JD PMOD Header
Figure 2.4: Photo of the Arty Board showing USB and Debug Connections
Chapter 3

Freedom E310 Arty FPGA Flash Programming File

The Xilinx Artix-7 XC7A35T FPGA configures on power-on from an on-board quad SPI flash chip. The Freedom E310 Arty FPGA SPI flash programming file can be downloaded from:

https://dev.sifive.com/develop/freedom-e310-arty-dev-kit-v1-0

Use the “Configuration Memory File (.mcs)” download link.

The Xilinx Vivado Design Suite is used for flash programming. Both the Vivado Lab Edition and WebPACK Edition 2016.1 support Artix-7 devices free of charge.

To program the SPI flash with Vivado:

1. Launch Vivado
2. Open Hardware Manager, open target board
3. Right click on the FPGA device and select “Add Configuration Memory Device”
4. Select

<table>
<thead>
<tr>
<th>Part</th>
<th>n25q128-3.3v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Micron</td>
</tr>
<tr>
<td>Family</td>
<td>n25q</td>
</tr>
<tr>
<td>Type</td>
<td>spi</td>
</tr>
<tr>
<td>Density</td>
<td>128</td>
</tr>
<tr>
<td>Width</td>
<td>x1,x2,x4</td>
</tr>
</tbody>
</table>

5. Click OK to “Do you want to program the configuration memory device now?”
6. Add freedom-e310-arty-1-0-2.mcs
7. Select OK
8. Once the programming completes in Vivado, press the “PROG” Button on the Arty Board to load the image into the FPGA.
Chapter 4

Boot and Run

The MCS file includes software for a simple demo program. This program is loaded to the SPI Flash along with the FPGA image. On reset, the RISC-V core will execute a simple demo program which prints a message over the UART and uses interrupts to blink and change the LEDs. This program will be overwritten in the SPI Flash when you program new software into the board with the SDK, but the FPGA image will not be modified.
Using a terminal emulator such as GNU screen on Linux, open a console connection from the host computer to the Freedom E310 Arty FPGA Dev Kit.

Set the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>115200</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Hardware Flow</td>
<td>None</td>
</tr>
</tbody>
</table>

For example, on Linux using GNU Screen:

```
sudo screen /dev/ttyUSB1 115200
```

You can use `Ctrl-a k` to “kill” (exit) the running screen session.

Depending on your setup, you may need additional drivers or permissions to communicate over the USB port.

If you are running on Ubuntu-style Linux, the below is an example of steps you may need to follow to access your dev kit without `sudo` permissions:

1. With your board’s debug interface connected, make sure your device shows up with the `lsusb` command:

   ```
   > lsusb
   ...
   Bus XXX Device XXX: ID 0403:6010 Future Technology Devices International, Ltd FT2232C Dual USB-UART/FIFO IC
   ```

2. Set the udev rules to allow the device to be accessed by the `plugdev` group:

   ```
   > sudo vi /etc/udev/rules.d/99-openocd.rules
   ```

 Add the following lines and save the file (if they are not already there):

   ```
   # These are for the HiFive1 Board
   SUBSYSTEM=="usb", ATTR{idVendor}=="0403",
   ATTR{idProduct}=="6010", MODE="664", GROUP="plugdev"

   SUBSYSTEM=="tty", ATTR{idVendor}=="0403",
   ATTRS{idProduct}=="6010", MODE="664", GROUP="plugdev"
   # These are for the Olimex Debugger for use with E310 Arty Dev Kit
   ```
SUBSYSTEM=="usb", ATTR{idVendor}=="15ba",
ATTR{idProduct}=="002a", MODE="664", GROUP="plugdev"

SUBSYSTEM=="tty", ATTRS{idVendor}=="15ba",
ATTRS{idProduct}=="002a", MODE="664", GROUP="plugdev"

3. See if your board shows up as a serial device belonging to the plugdev group:

 > ls /dev/ttyUSB*
 /dev/ttyUSB0 /dev/ttyUSB1

 (If you have other serial devices or multiple boards attached, you may have more devices
 listed). For serial communication with the UART, you will always want to select the higher
 number of the pair, in this example /dev/ttyUSB1.

 > ls -l /dev/ttyUSB1
 crw-rw-r-- 1 root plugdev 188, 1 Nov 28 12:53 /dev/ttyUSB1

4. Add yourself to the plugdev group. You can use the whoami command to determine your
 user name.

 > whoami your_user_name > sudo usermod -a -G plugdev your_user_name

5. Log out and log back in, then check that you’re now a member of the plugdev group:

 > groups
 ... plugdev ...

Now you should be able to access the serial (UART) and debug interface without sudo permis-
sions.
4.1 Terminal Log

If you have your serial setup correctly, this is what you will see on your terminal (you may need to hit the 'Reset' button to restart the program):

```
SIFIVE, INC.

SIFIVE E-Series Software Development Kit 'demo_gpio' program.
Every 1.5 second, the Timer Interrupt will invert the LEDs.
(Arty Dev Kit Only): Press Buttons 0, 1, 2 to Set the LEDs.
```
Chapter 5

Software Development Flow

The Freedom E310 Arty FPGA Dev Kit’s boot code contains a jump to the external SPI Flash on the board, at address 0x20400000. You can change the program which the dev kit runs by using the debug/programming interface to flash a new compiled program into the SPI Flash.

SiFive supports two methods of obtaining the software development toolchain: compiling the Freedom E SDK from source, and installing precompiled tools using the Arduino IDE. The two techniques will install the same set of tools, but the install paths and associated software libraries are different.

5.1 Supported Platforms

This document assumes that you are running on a Linux system, either natively or on a Linux Virtual Machine. Future versions of this document will include details on how to install on other platforms.

5.2 Software Development with the Freedom E SDK

5.2.1 Compiling the Freedom E SDK Toolchain

The Freedom E Software Development Kit provides everything required to compile, customize, and debug C and/or RISC-V assembly programs: GCC 6.1.0 cross-compilation toolchain, RISC-V enabled GDB and OpenOCD, etc.

To clone the Freedom E SDK git repository:

 git clone --recursive https://github.com/sifive/freedom-e-sdk.git

Install all the necessary packages described in the repository’s README.md file.

To build the software toolchain:

 cd freedom-e-sdk
 make tools

To keep your software toolchain up to date with the upstream repository:
5.2.2 Compiling Software Programs

To build a C program that will be loaded by the debugger/programmer into the SPI Flash, use the Freedom E SDK to compile. An example is provided in the software/demo_gpio directory. To build the program:

```
cd freedom-e-sdk
make software PROGRAM=demo_gpio BOARD=freedom-e300-arty
```

To compile the Dhrystone benchmark instead:

```
cd freedom-e-sdk
make software PROGRAM=dhrystone BOARD=freedom-e300-arty
```

5.2.3 Uploading Software Programs

To upload the program to the SPI flash, connect the board’s debug interface as described in Chapter 2. Then execute:

```
make upload PROGRAM=<your desired program> BOARD=freedom-e300-arty
```

5.2.4 Debugging Running Programs

To debug your program with GDB, connect your board and launch the debugger:

```
make run_debug PROGRAM=<your desired program> BOARD=freedom-e300-arty
```

This will automatically launch OpenOCD and GDB, connect to the board, and halt the currently running program. You can step through the running program with `stepi`, or load the new program using `load`. The usual suite of GDB commands are available to set breakpoints, examine and modify memory, continue execution, etc.

5.3 Software Development Using the Arduino IDE

SiFive also supports software development for the Freedom E310 Arty FPGA Dev Kit with the Arduino IDE. When using this method, the Freedom E SDK is automatically installed, so you do not need to install it separately. Follow these steps:
5.3.1 Installing the Freedom E310 Arty FPGA Dev Kit Board Package

1. Download and install the Arduino IDE, following the instructions at
 \url{https://www.arduino.cc/en/Guide/HomePage}

2. Launch the Arduino IDE

3. Navigate to File → Preferences and add the SiFive additional Board Manager URL as shown in Figure 5.1:

 \url{http://static.dev.sifive.com/bsp/arduino/package_sifive_index.json}

4. Add the SiFive development kit boards using the Board Manager:
 Tools → Board → Board Manager.
 Search for “SiFive” and click Install to download and install the package. Restart your Arduino IDE, then find the Freedom E310 Arty FPGA Dev Kit under Tools → Board, as shown in Figure 5.2

5. Select SiFive OpenOCD as the Programmer from the Tools menu.

6. To compile and upload a simple example program, select
 File → Examples → Basics → Blink
 Click the “upload” button in the Arduino IDE, your program will compile and upload to your Dev Kit, and the green LED will blink.

5.3.2 Open Source Board Support Package Code

The code installed with the Board package is open-source, and available to view or download at:
\url{http://github.com/sifive/cinco}
Figure 5.1: Adding the SiFive Dev Kits Board URL to your Arduino IDE
Figure 5.2: Selecting Freedom E310 Arty FPGA Dev Kit in the Arduino IDE
Chapter 6

Modifying the FPGA Image

The Freedom E310 Arty FPGA Dev Kit source code is fully open sourced, and you can use the repository to create different Freedom E300 variants. You can find the code and scripts to re-create the source RTL and MCS file at http://github.com/sifive/freedom.
Chapter 7

For More Information

Additional information, the latest version of this guide, and supporting files can be found at https://dev.sifive.com