
SiFive S51 Manual

20G1.03.00

© SiFive, Inc.

SiFive S51 Manual

Proprietary Notice

Copyright © 2017–2020, SiFive Inc. All rights reserved.

Information in this document is provided “as is,” with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

20G1.03.00 June 13, 2020 • No functional changes

koala.02.00-preview June 03, 2020 • No functional changes

koala.01.00-preview May 22, 2020 • No functional changes

koala.00.00-preview May 15, 2020
• Changed clock, reset, and logic I/O ports

associated with debug

v19.08p3p0 April 30, 2020

• Fixed issue in which mcause values did

not reset to 0 after reset

• Added the "Disable Speculative I$ Refill"

bit to the Feature Disable CSR to partially

mitigate undesired speculative accesses

to the Memory Port

• Fixed issue in which unused logic in asyn-

chronous crossings (as found in the

Debug connection to the core) would

cause CDC lint warnings

• Fixed issue in which WFI did not gate the

clock if the following instruction was a

memory access

• Fixed issue in which performance coun-

ters set to count both exceptions and

other retirement events only counted the

exceptions

• Various documentation fixes and improve-

ments

v19.08p2p0 December 06, 2019
• Fixed erratum in which the TDO pin may

remain driven after reset

v19.08p1p0 November 08, 2019

• Fixed erratum in which Debug.SBCS had

incorrect reset value for SBACCESS

• Fixed typos and other minor documenta-

tion errors

v19.08p0 September 17, 2019
• The Debug Module memory region is no

longer accessible in M-mode

v19.05p2 August 26, 2019

• Fix for errata on 5-series cores with L1

data caches or L2 caches in which

CFLUSH.D.L1 followed by a load that is

nack’d could cause core lockup

v19.05p1 July 22, 2019

• SiFive Insight is enabled

• Enable debugger reads of Debug Module

registers when periphery is in reset

• Fix errata to get illegal instruction excep-

tion executing DRET outside of debug

mode

Version Date Changes

v19.05 June 09, 2019
• v19.05 release of the S51 Standard Core.

No functional changes.

v19.02 February 28, 2019

• Changed the date based release number-

ing system

• SiFive Insight [enabled]

• WFI-based clock-gating [enabled]

• Periph port width [32b ⇒ 64b]

• Global interrupts [255 ⇒ 127]

v2p1 August 22, 2018
• Corrected Clint base address in the Clint

chapter

v2p0 June 01, 2018

• Updated E51 Core Complex definition; 4

hw breakpoints and 255 Global interrupts

• Moved Interface and Debug Interface

chapters to User Guide

v1p2 October 11, 2017

• Core Complex branding

• Added references

• Updated interrupt chapter

v1p1 August 25, 2017

• Updated text descriptions

• Updated register and memory map tables

for consistency

v1p0 May 04, 2017

• Initial release

• Describes the functionality of the SiFive

E51 Core Complex

Contents

1 Introduction .. 7

1.1 About this Document ...8

1.2 About this Release..8

1.3 S51 Overview ... 8

1.4 S5 RISC‑V Core ...9

1.5 Memory System..10

1.6 Interrupts ... 10

1.7 Debug Support ...10

1.8 Compliance .. 10

2 List of Abbreviations and Terms ...12

3 S5 RISC-V Core ...14

3.1 Instruction Memory System..14

3.1.1 Execution Memory Space ...14

3.1.2 L1 Instruction Cache...15

3.1.3 Instruction Cache Reconfigurability ..15

3.1.4 Cache Maintenance..16

3.1.5 Instruction Fetch Unit..16

3.1.6 Branch Prediction ...16

3.2 Execution Pipeline ..17

3.2.1 Instruction Timing ...17

3.3 Data Memory System ..18

3.3.1 Data Tightly Integrated Memory (DTIM) ..18

3.4 Atomic Memory Operations..19

3.5 Local Interrupts...19

3.6 Supported Modes ...19

3.7 Physical Memory Protection (PMP)...19

3.7.1 PMP Functional Description ..20

1

3.7.2 PMP Region Locking ..20

3.7.3 PMP Registers ...20

3.7.4 PMP and PMA ...22

3.7.5 PMP Programming Overview ..22

3.7.6 PMP and Paging ..24

3.7.7 PMP Limitations ...25

3.7.8 Behavior for Regions without PMP Protection ...25

3.7.9 Cache Flush Behavior on PMP Protected Region..25

3.8 Hardware Performance Monitor..25

3.8.1 Performance Monitoring Counters Reset Behavior ..25

3.8.2 Fixed-Function Performance Monitoring Counters ...25

3.8.3 Event-Programmable Performance Monitoring Counters......................................26

3.8.4 Event Selector Registers...26

3.8.5 Event Selector Encodings ...27

3.8.6 Counter-Enable Registers ...28

3.9 Ports.. 28

3.9.1 Front Port ..28

3.9.2 Peripheral Port ...29

3.9.3 System Port ...29

4 Physical Memory Attributes and Memory Map30

4.1 Physical Memory Attributes Overview ...30

4.2 Memory Map ..31

5 Programmer’s Model..33

5.1 Base Instruction Formats ...33

5.2 I Extension: Standard Integer Instructions ...34

5.2.1 R-Type (Register-Based) Integer Instructions..35

5.2.2 I-Type Integer Instructions ...35

5.2.3 I-Type Load Instructions..37

5.2.4 S-Type Store Instructions ..38

5.2.5 Unconditional Jumps ..38

5.2.6 Conditional Branches..39

2

5.2.7 Upper-Immediate Instructions..40

5.2.8 Memory Ordering Operations ..41

5.2.9 Environment Call and Breakpoints ...41

5.2.10 NOP Instruction..41

5.3 M Extension: Multiplication Operations..41

5.3.1 Division Operations ..42

5.4 A Extension: Atomic Operations ...43

5.4.1 Atomic Memory Operations (AMOs) ...43

5.5 C Extension: Compressed Instructions..43

5.5.1 Compressed 16-bit Instruction Formats ..44

5.5.2 Stack-Pointed-Based Loads and Stores ...44

5.5.3 Register-Based Loads and Stores..45

5.5.4 Control Transfer Instructions ...46

5.5.5 Integer Computational Instructions ...47

5.6 Zicsr Extension: Control and Status Register Instructions ...49

5.6.1 Control and Status Registers ...51

5.6.2 Defined CSRs ..51

5.6.3 CSR Access Ordering...55

5.6.4 SiFive RISC‑V Implementation Version Registers..55

5.7 Base Counters and Timers ..56

5.7.1 Timer Register ...57

5.7.2 Timer API ..57

5.8 ABI - Register File Usage and Calling Conventions ..58

5.8.1 RISC‑V Assembly ..60

5.8.2 Assembler to Machine Code..60

5.8.3 Calling a Function (Calling Convention) ..62

5.9 Memory Ordering - FENCE Instructions ..64

5.10 Boot Flow ... 65

5.11 Linker File .. 66

5.11.1 Linker File Symbols ..67

5.12 RISC‑V Compiler Flags ...68

5.12.1 arch, abi, and mtune ...68

5.13 Compilation Process ...71

3

5.14 Large Code Model Workarounds ..72

5.14.1 Workaround Example #1 ...72

5.14.2 Workaround Example #2 ...73

5.15 Pipeline Hazards...74

5.15.1 Read-After-Write Hazards ...74

5.15.2 Write-After-Write Hazards ...74

6 Custom Instructions...76

6.1 CFLUSH.I.L1..76

6.2 CEASE ... 76

6.3 PAUSE ... 76

6.4 Branch Prediction Mode CSR...77

6.4.1 Branch-Direction Prediction ...77

6.5 SiFive Feature Disable CSR ..77

6.6 Other Custom Instructions ...78

7 Interrupts and Exceptions...79

7.1 Interrupt Concepts ..79

7.2 Exception Concepts ..80

7.3 Trap Concepts ..81

7.4 Interrupt Block Diagram ...82

7.5 Local Interrupts...82

7.6 Interrupt Operation ..83

7.6.1 Interrupt Entry and Exit ...83

7.7 Interrupt Control and Status Registers ..83

7.7.1 Machine Status Register (mstatus) ..84

7.7.2 Machine Trap Vector (mtvec)..84

7.7.3 Machine Interrupt Enable (mie) ...85

7.7.4 Machine Interrupt Pending (mip) ...86

7.7.5 Machine Cause (mcause) ...87

7.7.6 Minimum Interrupt Configuration ..88

7.8 Interrupt Priorities ...89

7.9 Interrupt Latency...89

4

8 Core-Local Interruptor (CLINT)...90

8.1 CLINT Priorities and Preemption ..91

8.2 CLINT Vector Table ...91

8.3 CLINT Interrupt Sources ..93

8.4 CLINT Interrupt Attribute..93

8.5 CLINT Memory Map ..94

8.6 Register Descriptions ..94

8.6.1 MSIP Registers ..95

8.6.2 Timer Registers..95

9 Platform-Level Interrupt Controller (PLIC) ...96

9.1 Memory Map ..96

9.2 Interrupt Sources ..97

9.3 Interrupt Priorities ...98

9.4 Interrupt Pending Bits ..98

9.5 Interrupt Enables ..99

9.6 Priority Thresholds ..100

9.7 Interrupt Claim Process ...100

9.8 Interrupt Completion..100

9.9 Example PLIC Interrupt Handler ...101

10 TileLink Error Device ...102

11 Power Management..103

11.1 Hardware Reset..103

11.2 Early Boot Flow...103

11.3 Interrupt State During Early Boot ..104

11.4 Other Boot Time Considerations ...104

11.5 Power-Down Flow ...105

12 Debug .. 107

12.1 Debug CSRs ..107

12.1.1 Trace and Debug Register Select (tselect)..107

5

12.1.2 Trace and Debug Data Registers (tdata1-3) ..108

12.1.3 Debug Control and Status Register (dcsr) ...109

12.1.4 Debug PC (dpc)...109

12.1.5 Debug Scratch (dscratch) ..109

12.2 Breakpoints ..109

12.2.1 Breakpoint Match Control Register (mcontrol) ..109

12.2.2 Breakpoint Match Address Register (maddress)...111

12.2.3 Breakpoint Execution ..111

12.2.4 Sharing Breakpoints Between Debug and Machine Mode112

12.3 Debug Memory Map..112

12.3.1 Debug RAM and Program Buffer (0x300–0x3FF) ...112

12.3.2 Debug ROM (0x800–0xFFF) ..112

12.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF) ..113

12.3.4 Safe Zero Address..113

12.4 Debug Module Interface...113

12.4.1 DM Registers ...113

12.4.2 Abstract Commands ...114

12.4.3 System Bus Access ..114

13 Appendix.. 115

13.1 Appendix A...115

13.1.1 S5 Series...115

14 References ..118

6

Chapter 1

Introduction

SiFive’s S51 is a high performance implementation of the RISC‑V RV64IMAC architecture. The

SiFive S51 is guaranteed to be compatible with all applicable RISC‑V standards, and this docu-

ment should be read together with the official RISC‑V user-level, privileged, and external debug

architecture specifications.

A summary of features in the S51 can be found in Table 1.

S51 Feature Set

Feature Description

Number of Harts 1 Hart.

S5 Core 1 × S5 RISC‑V core.

Local Interrupts 16 Local Interrupt signals per hart, which can be connected

to off-core-complex devices.

PLIC Interrupts 127 Interrupt signals, which can be connected to off-core-

complex devices.

PLIC Priority Levels The PLIC supports 7 priority levels.

Hardware Breakpoints 4 hardware breakpoints.

Physical Memory Protection

Unit

PMP with 8 regions and a minimum granularity of 4 bytes.

Table 1: S51 Feature Set

The S51 also has a number of on-core-complex configurability options, allowing one to tune the

design to a specific application. The configurable options are described in Section 13.1.

7

1.1 About this Document

This document describes the functionality of the S51. To learn more about the production deliv-

erables of the S51, consult the S51 User Guide.

1.2 About this Release

This is a general release of the S51, with a supported life cycle of two years from the release

date. Contact support@sifive.com if you have any questions.

1.3 S51 Overview

The S51 includes 1 × S5 64-bit RISC‑V core, along with the necessary functional units required

to support the core. These units include a Core-Local Interruptor (CLINT) to support local inter-

rupts, a Platform-Level Interrupt Controller (PLIC) to support platform interrupts, physical mem-

ory protection, a Debug unit to support a JTAG-based debugger host connection, and a local

cross-bar that integrates the various components together.

The S51 memory system consists of a Data Tightly Integrated Memory (DTIM) and Instruction

Cache with configurable Instruction Tightly Integrated Memory (ITIM). The S51 also includes a

Front Port, which allows external masters to be coherent with the L1 memory system and

access to the TIMs, thereby removing the need to maintain coherence in software for any exter-

nal agents.

An overview of the SiFive S51 is shown in Figure 1.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 8

Figure 1: S51 Block Diagram

The S51 memory map is detailed in Section 4.2, and the interfaces are described in full in the

S51 User Guide.

1.4 S5 RISC‑V Core

The S51 includes a 64-bit S5 RISC‑V core, which has a single-issue, in-order, 5-6 stage RISC‑V

processor targeted for embedded applications requiring deterministic real time response. The

microarchitecture is capable of delivering an IPC of 1 and the core can be clocked at relatively

high clock speeds. The SiFive S5 core is guaranteed to be compatible with all applicable

RISC‑V standards.

The S5 core is configured to support the RV64I base ISA, as well as standard Multiply (M),

Atomic (A), and Compressed (C) RISC‑V extensions (RV64IMAC). The S5 can also support

legal combinations of privilege modes in conjunction with Physcial Memory Protection (PMP),

thereby allowing System-on-Chip (SoC) implementations to make the right area, power, and

feature trade-offs.

The S5 core is designed to be feature rich, providing a very flexible memory system that

includes a L1 cache, Tightly Integrated Memory (TIM) and standards-based configurable bus

interfaces, and memory maps that provide a lot of flexibility for SoC integration. The microarchi-

tecture also incorporates a branch prediction unit that is composed of a 28-entry Branch Target

Copyright © 2017–2020, SiFive Inc. All rights reserved. 9

Buffer (BTB), a 512-entry Branch History Table (BHT), and a 6-entry Return Address Stack

(RAS).

The core is described in more detail in Chapter 3.

1.5 Memory System

The S51 memory system has a Level 1 memory system optimized for high performance. The

instruction subsystem consists of a 16 KiB, 2-way instruction cache with the ability to reconfig-

ure a single way into a fixed-address Instruction Tightly Integrated Memory (ITIM).

The data subsystem allows for a maximum Data Tightly Integrated Memory (DTIM) size of

64 KiB.

The memory system is described in more detail in Chapter 3.

1.6 Interrupts

The S51 provides the standard RISC‑V M-mode timer and software interrupts via the Core-

Local Interruptor (CLINT). The Core Complex also supports 16 high-priority, low-latency local

vectored interrupts per hart.

The S51 also includes a RISC‑V standard Platform-Level Interrupt Controller (PLIC), which sup-

ports 127 global interrupts with 7 priority levels.

Interrupts are described in Chapter 7. The CLINT is described in Chapter 8. The PLIC is

described in Chapter 9.

1.7 Debug Support

The S51 provides external debugger support over an industry-standard JTAG port, including 4

hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 12, and the debug interface is described in the

S51 User Guide.

1.8 Compliance

The S51 is compliant to the following versions of the various RISC‑V specifications:

Copyright © 2017–2020, SiFive Inc. All rights reserved. 10

ISA Version Ratified Frozen

RV64I 2.1 Y

Extensions Version Ratified Frozen

Multiplication (M) 2.0 Y

Atomic (A) 2.0 Y

Compressed (C) 2.0 Y

Devices Version Ratified Frozen

Debug specification 0.13 Y

Copyright © 2017–2020, SiFive Inc. All rights reserved. 11

Chapter 2

List of Abbreviations and Terms

12

Term Definition

AES Advanced Encryption Standard

BHT Branch History Table

BTB Branch Target Buffer

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CFM Cipher FeedBack

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core-

local interrupts.

CLINT Core-Local Interruptor. Generates per hart software interrupts and timer

interrupts.

CTR CounTeR mode

DTIM Data Tightly Integrated Memory

ECB Electronic Code Book

GCM Galois/Counter Mode

hart HARdware Thread

IJTP Indirect-Jump Target Predictor

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely-Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex that is not tightly integrated to a CPU core.

OFB Output FeedBack

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a

RISC‑V system.

PMP Physical Memory Protection

RAS Return-Address Stack

RO Used to describe a Read-Only register field.

RW Used to describe a Read/Write register field.

SHA Secure Hash Algorithm

TileLink A free and open interconnect standard originally developed at UC Berke-

ley.

TRNG True Random Number Generator

WARL Write-Any, Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI Writes-Preserve, Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

WO Used to describe a Write-Only registers field.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 13

Chapter 3

S5 RISC-V Core

This chapter describes the 64-bit S5 RISC‑V processor core, instruction fetch and execution

unit, L1 memory system, and external interfaces.

The S5 feature set is summarized in Table 2.

Feature Description

ISA RV64IMAC

L1 Instruction Cache 16 KiB 2-way instruction cache

Instruction Tightly Integrated Memory (ITIM) Shared with instruction cache (max. 8 KiB)

Data Tightly Integrated Memory (DTIM) 64 KiB DTIM

Modes Machine mode, user mode

SiFive Custom Instruction Extension (SCIE) Not Present

Table 2: S5 Feature Set

3.1 Instruction Memory System

This section describes the instruction memory system of the S5 core.

3.1.1 Execution Memory Space

The regions of executable memory consist of all directly addressable memory in the system.

The memory includes any volatile or non-volatile memory located off any of the Core Complex

ports, and includes the on-core-complex DTIM and ITIM.

See Section 4.2 for a description of the executable regions of the S51.

All executable regions except the ITIM are treated as instruction cacheable. There is no method

to disable this behavior.

The ITIM is an optional region that repurposes a portion of the instruction cache, as described in

Section 3.1.3.

14

Trying to execute an instruction from a non-executable address results in an instruction access

trap.

3.1.2 L1 Instruction Cache

The L1 instruction cache is 16 KiB 2-way set associative cache. It has a block size of 64 bytes

and is read-allocate with a random replacement policy. A cache line fill triggers a burst access

outside of the Core Complex, starting with the first address of the cache line. There are no write-

backs to memory from the instruction cache and it is not kept coherent with the memory system.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache

is one clock cycle. There is no way to disable the instruction cache and cache allocations begin

immediately out of reset.

3.1.3 Instruction Cache Reconfigurability

The instruction cache can be partially reconfigured into Instruction Tightly Integrated Memory

(ITIM), which occupies a fixed address range in the memory map. ITIM provides high-perfor-

mance, predictable instruction delivery. Fetching an instruction from ITIM is as fast as an

instruction cache hit, with no possibility of a cache miss. ITIM can hold data as well as instruc-

tions, though loads and stores from a core to its ITIM are not as performant as loads and stores

to its Data Tightly Integrated Memory (DTIM).

The ITIM region in the S51 memory map is represented by a fixed address range that includes

both the maximum range that can be allocated to ITIM, or the ITIM Mem region; as well as the

remaining region that must be reserved as instruction cache, or the ITIM Ctrl region.

The instruction cache can be configured as ITIM starting from address 0x0180_0000, in units of

cache lines (64 bytes) up to a maximum size of 8 KiB, ending in address 0x0180_1FFF. A single

instruction cache way, 8 KiB, must remain an instruction cache. The ITIM is allocated simply by

writing to it. A store to the nth byte of the ITIM memory map reallocates the first n+1 bytes of

instruction cache as ITIM, rouded up to the next cache block. For determinism, software must

clear the contents of ITIM after allocating it.

ITIM is deallocated by storing zero to the first byte after the maximum ITIM region, address

0x0180_2000. The deallocated ITIM space is automatically returned to the instruction cache.

Returned cache lines are invalidated. It is unpredictable whether ITIM contents are preserved

between deallocation and allocation.

A hart executing in user mode can reconfigure the cache. If this is not desired, then the Physical

Memory Protection unit can be used to prevent writes to the ITIM region.

Reads to the ITIM Mem region that are not allocated to the ITIM return 0x0. Reads to the Ctrl

region return unspecified data and are guaranteed not to have any side-effects. Writes to the

Ctrl region beyond 0x0180_2000 have unspecified behavior and should be avoided.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 15

3.1.4 Cache Maintenance

The instruction cache supports the FENCE.I instruction, which invalidates the entire instruction

cache, as described in Section 5.9.

Writes to instruction memory from the core or another master must be synchronized with the

instruction fetch stream by executing FENCE.I.

3.1.5 Instruction Fetch Unit

The S5 instruction fetch unit is responsible for keeping the pipeline fed with instructions from

memory. Fetches are always word-aligned and there is a one-cycle penalty for branching to a

32-bit instruction that is not word-aligned.

The S5 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions. As two 16-bit instructions can be fetched per cycle, the

instruction fetch unit is often idle when executing programs mostly comprised of compressed

16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-

tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address

results in an instruction access trap.

3.1.6 Branch Prediction

The S5 instruction fetch unit contains branch prediction hardware to improve performance of the

processor core. The branch predictor comprises:

• A 28-entry branch target buffer (BTB) that predicts the target of taken branches.

• A 512-entry branch history table (BHT) that predicts the direction of conditional branches.

• A 6-entry return address stack (RAS) that predicts the target of procedure returns.

Direct and indirect branches can be predicted.

The branch predictor has a one-cycle latency, such that correctly predicted control-flow instruc-

tions result in no penalty. Mispredicted control-flow instructions incur a three-cycle penalty. No

maintenance can be performed on branch prediction RAMs.

Branch prediction is disabled out of reset and must be enabled in the Feature Disable CSR,

described in Chapter 6. Branch prediction only occurs over the Memory Port and ITIM regions of

memory. Branch prediction results in a speculative access to memory, namely an access to

memory that might not be needed. As branch prediction can occur at any point after it has been

enabled, data cacheable regions of memory (i.e., DDR) must be able to respond to instruction

fetches immediately after branch prediction is enabled. If DDR initialization is not completed

before branch prediction is enabled, the memory system must return a decode error (DECERR)

for accesses made to DDR. The fetch unit will ignore errors associated with speculative

accesses and continue to operate normally.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 16

The Branch Prediction Mode CSR, also described in Chapter 6, provides a means to customize

the branch predictor behavior to trade average performance for more predictable execution

time.

3.2 Execution Pipeline

Figure 2: Example S5 Block Diagram

The S5 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:

instruction fetch (IF), instruction decode and register fetch (ID), execute (EX), data memory

access (MEM), and register write-back (WB).

3.2.1 Instruction Timing

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed

such that most instructions have a one-cycle result latency. There are several exceptions, noted

in Table 3.

Instruction Latency

LW Two-cycle result latency, assuming cache hit

LH, LHU, LB, LBU Three-cycle result latency, assuming cache hit

CSR reads Three-cycle result latency

MUL, MULH, MULHU,

MULHSU

One-cycle result latency

DIV, DIVU, REM, REMU Between three-cycle to 64-cycle result latency, depending on

operand values1

1The latency of DIV, DIVU, REM, and REMU instructions can be determined by calcuating:

Latency = 2 cycles + log2(dividend) − log2(divisor) + 1 cycle

if input is negative + 1 cycle if the output is negative

Table 3: Instruction Latency Exceptions

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 17

The S5 implements the standard Multiply (M) extension to the RISC‑V architecture for integer

multiplication and division. The S5 has a 64 bit per cycle hardware multiply and a 1 bit per cycle

hardware divide. The multiplier is fully pipelined and can begin a new operation on each cycle,

with a maximum throughput of one operation per cycle.

The hart will not abandon a divide instruction in flight. This means if an interrupt handler tries to

use a register that is the destination register of a divide instruction, the pipeline stalls until the

divide is complete.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-

predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps

incur a three-cycle penalty.

Most CSR writes result in a pipeline flush with a five-cycle penalty, so the results of the CSR

write are observed on the next instruction.

3.3 Data Memory System

The data memory system consists of on-core-complex data and the ports in the S51 memory

map, shown in Section 4.2. The on-core-complex data memory consists of a 64 KiB Data Tightly

Integrated Memory (DTIM). A design cannot have both DTIM and data cache.

As no data cache is present, all data accesses are non-cacheable. Non-cacheable data

accesses are collectively called memory-mapped I/O accesses, or MMIOs.

The S5 pipeline allows for multiple outstanding memory accesses. No store buffers are utilized

in the Core Complex. Misaligned accesses are not allowed to any memory region and result in a

trap to allow for software emulation.

3.3.1 Data Tightly Integrated Memory (DTIM)

The DTIM provides deterministic access time, which is important for applications with hard real-

time requirements. The access latency is two clock cycles for words and double-words, and

three clock cycles for smaller quantities.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

The DTIM region can be used to store instructions, but it has no lasting performance advantage

over other memory regions. Fetching from the DTIM first results in an instruction cache line fill

and execution occurs from the instruction cache.

The DTIM is capable of supporting the RISC‑V standard Atomic (A) extension. Note that atomic

extension support has not been configured in the S51.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 18

3.4 Atomic Memory Operations

The S5 core supports the RISC‑V standard Atomic (A) extension on the DTIM and the Periph-

eral Port.

Atomic memory operations to regions that do not support them generate an access exception

precisely at the core.

The load-reserved and store-conditional instructions are only supported on cached regions, thus

generate an access exception on DTIM and other uncached memory regions.

See Section 5.4 for more information on the instructions added by this extension.

3.5 Local Interrupts

The S5 supports up to 16 local interrupt sources that are routed directly to the core. See Chap-

ter 7 for a detailed description of Local Interrupts.

3.6 Supported Modes

The S5 supports RISC‑V user mode, providing two levels of privilege: machine (M) and user

(U). U-mode provides a mechanism to isolate application processes from each other and from

trusted code running in M-mode.

See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

3.7 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-

sions across the entire memory map of the device. However, privilege levels below machine

mode do not have read, write, or execute permissions to any region of the device memory map

unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may may

grant permissions to specific regions of the device’s memory map, but it can also revoke per-

missions when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in

user mode. For machine mode, PMP checks do not occur unless the lock bit (L) is set in the

pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is user

(mstatus.MPP=0x0), and the Modify Privilege bit is set (mstatus.MPRV=1). For virtual address

translation, PMP checks are also applied to page table accesses in supervisor mode.

The S5 PMP supports 8 regions with a minimum region size of 4 bytes.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 19

This section describes how PMP concepts in the RISC‑V architecture apply to the S5. For addi-

tional information on the PMP refer to The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10.

3.7.1 PMP Functional Description

The S5 PMP unit has 8 regions and a minimum granularity of 4 bytes. Access to each region is

controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlapping

regions are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take priority

over highered numbered regions. The S5 PMP unit implements the architecturally defined

pmpcfgY CSR pmpcfg0, supporting 8 regions. pmpcfg2 is implemented, but hardwired to zero.

Access to pmpcfg1 or pmpcfg3 results in an illegal instruction exception.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on U-mode accesses. However, locked regions (see Section 3.7.2) additionally

enforce their permissions on M-mode.

3.7.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpXcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply only

to U-mode.

3.7.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 64-bit

pmpaddrX register that holds the base address of the protected region. The range of each

region depends on the Addressing (A) mode described in the next section. The pmpXcfg fields

reside within 64-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching

field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP

entry wins for that region.

PMP Configuration Registers

For RV64 architectures, pmpcfg1 and pmpcfg3 are not implemented. This reduces the footprint

since pmpcfg2 already contains configuration fields pmp8cfg through pmp11cfg for both RV32

and RV64.

07815162324313239404748555663

pmp0cfgpmp1cfgpmp2cfgpmp3cfgpmp4cfgpmp5cfgpmp6cfgpmp7cfg

Copyright © 2017–2020, SiFive Inc. All rights reserved. 20

Figure 3: RV64 pmpcfg0 Register

07815162324313239404748555663

pmp8cfgpmp9cfgpmp10cfgpmp11cfgpmp12cfgpmp13cfgpmp14cfgpmp15cfg

Figure 4: RV64 pmpcfg2 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as

csrr for reads, and csrw for writes.

01234567

R (WARL)W (WARL)X (WARL)A (WARL)0 (WARL)L (WARL)

Figure 5: RV64 pmpXcfg bitfield

Bit Description

0 R: Read Permissions

0x0 - No read permissions for this region

0x1 - Read permission granted for this region

1 W: Write Permissions

0x0 - No write permissions for this region

0x1 - Write permission granted for this region

2 X: Execute permissions

0x0 - No execute permissions for this region

0x1 - Execute permission granted for this region

[4:3] A: Address matching mode

0x0 - PMP Entry disabled

0x1 - Top of Range (TOR)

0x2 - Naturally Aligned Four Byte Region (NA4)

0x3 - Naturally Aligned Power-of-Two region, ≥ 8 bytes (NAPOT)

7 L: Lock Bit

0x0 - PMP Entry Unlocked, no permission restrictions applied to machine mode. PMP

entry only applies to S and U modes.

0x1 - PMP Entry Locked, permissions enforced for all privilege levels including

machine mode. Writes to pmpXcfg and pmpcfgY are ignored and can only be cleared

with system reset.

Table 4: pmpXcfg Bitfield Description

Note: The combination of R=0 and W=1 is not currently implemented.

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by

The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Additional details on the available address matching modes is described below.

A = 0x0: The attributes are disabled. No PMP protection applied for any privilege level.

A = 0x1: Top of range (TOR). Supports four byte granularity, and the regions are defined by

[PMP(i - 1) > a > PMP(i)], where 'a' is the address range. PMP(i) is the top of the range, where

Copyright © 2017–2020, SiFive Inc. All rights reserved. 21

PMP(i - 1) represents the lower address range. If only pmp0cfg selects TOR, then the lower

bound is set to address 0x0.

A = 0x2: Naturally aligned four-byte region (NA4). Supports only a four-byte region with four

byte granularity. Not supported on SiFive U7 series cores since minimum granularity is 4 KiB.

A = 0x3: Naturally aligned power-of-two region (NAPOT), ≥ 8 bytes. When this setting is pro-

grammed, the low bits of the pmpaddrX register encode the size, while the upper bits encode the

base address right shifted by two. There is a zero bit in between, we will refer to as the least sig-

nificant zero bit (LSZB).

Some examples follow using NAPOT address mode.

Base

Address

Region

Size*

LSZB

Position
pmpaddrX Value

0x4000_0000 8 B 0 (0x1000_0000 | 1’b0)

0x4000_0000 32 B 2 (0x1000_0000 | 3’b011)

0x4000_0000 4 KB 9 (0x1000_0000 | 10’b01_1111_1111)

0x4000_0000 64 KB 13 (0x1000_0000 | 13’b01_1111_1111_1111)

0x4000_0000 1 MB 17 (0x1000_0000 | 17’b01_1111_1111_1111_1111)

*Region size is 2(LSZB+3).

Table 5: pmpaddrX Encoding Examples for A=NAPOT

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective

pmpXcfg field. Each address register contains the base address of the protected region right

shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC‑V Instruction Set Manual, Volume II: Privi-

leged Architecture, Version 1.10 are [55:2].

0535463

address[55:2] (WARL)0 (WARL)

Figure 6: RV64 pmpaddrX Register

3.7.4 PMP and PMA

The PMP values are used in conjunction with the Physical Memory Attributes (PMAs) described

in Section 4.1. Since the PMAs are static and not configurable, the PMP can only revoke read,

write, or execute permissions to the PMA regions if those permissions already apply statically.

3.7.5 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should

be first programmed with the base address of the protected region, right shifted by two. Then,

Copyright © 2017–2020, SiFive Inc. All rights reserved. 22

the pmpcfgY register should be programmed with the properly configured 64-bit value containing

each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to 0,

marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are

applied to three regions of interest, and a fourth region covers the remaining memory map.

Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered

regions. This rule allows higher numbered PMP registers to have blanket coverage over the

entire memory map while allowing lower numbered regions to apply permissions to specific

regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a

32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base

address base 0x3000_0000. The rest of the memory map is reserved space.

Figure 7: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-

ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range

0xC–0xF, then an 8-byte access to the range 0x8–0xF will fail, assuming that PMP entry is the

highest-priority entry that matches those addresses.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 23

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all

bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then

the access depends on the permissions set for that region. Similarly, while in Supervisor mode,

the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction

access fault would occur on a failed instruction fetch. When an exception occurs while attempt-

ing to execute from a region without execute permissions, the fault occurs on the fetch and not

the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the

address of the branch.

It is possible for a single instruction to generate multiple accesses, which may not be mutually

atomic. If at least one access generated by an instruction fails, then an exception will occur. It

might be possible that other accesses from a single instruction will succeed, with visible side

effects. For example, references to virtual memory may be decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be

decomposed into multiple accesses, some of which may succeed before an access exception

occurs. In particular, a portion of a misaligned store that passes the PMP check may become

visible, even if another portion fails the PMP check. The same behavior may manifest for float-

ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store

address is naturally aligned.

3.7.6 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-

tual memory systems described The RISC‑V Instruction Set Manual, Volume II: Privileged Archi-

tecture, Version 1.10. When paging is enabled, instructions that access virtual memory may

result in multiple physical-memory accesses, including implicit references to the page tables.

The PMP checks apply to all of these accesses. The effective privilege mode for implicit page-

table accesses is S.

Implementations with virtual memory are permitted to perform address translations speculatively

and earlier than required by an explicit virtual-memory access. The PMP settings for the result-

ing physical address may be checked at any point between the address translation and the

explicit virtual-memory access. A mis-predicted branch to a non-executable address range does

not generate a trap. Hence, when the PMP settings are modified in a manner that affects either

the physical memory that holds the page tables or the physical memory to which the page

tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-

tem. This is accomplished by executing an SFENCE.VMA instruction with rs1=x0 and rs2=x0,

after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses

check the PMP settings synchronously, so no fence is needed.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 24

3.7.7 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions

on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,

SiFive designs may contain a Front Port to allow external bus masters access to the full mem-

ory map of the system. The PMP cannot prevent access from external bus masters on the Front

Port.

3.7.8 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by

default, supervisor or user mode accesses will fail, while machine mode access will be allowed.

Access to reserved regions within a device’s memory map (an interrupt controller for example)

will return 0x0 on reads, and writes will be ignored. Access to reserved regions outside of a

device’s memory map without PMP protection will result in a bus error.

3.7.9 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect

a part of that line, a data cache flush instruction will generate a store access fault exception if

the flush includes any part of the line that is protected. The cache flush instruction does an

invalidate and write-back, so it is essentially trying to write back to the memory location that is

protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-

ceed and not generate an exception. If a data cache flush is required without a write-back, use

the cache discard instruction instead, as this will invalidate but not write back the line.

3.8 Hardware Performance Monitor

The S5 processor core supports a basic hardware performance monitoring (HPM) facility. The

performance monitoring faculty is divided into two classes of counters: fixed-function and event-

programmable counters. These classes consist of a set of fixed counters and their counter-

enable registers, as well as a set of event-programmable counters and their event selector reg-

isters. The registers are available to control the behavior of the counters. Performance monitor-

ing can be useful for multiple purposes, from optimization to debug.

3.8.1 Performance Monitoring Counters Reset Behavior

At system reset, the hardware performance monitor counters are not reset and thus have an

arbitrary value. Users can write desired values to the counter control and status registers

(CSRs) to start counting at the given, known value.

3.8.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event

type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only

Copyright © 2017–2020, SiFive Inc. All rights reserved. 25

modification to the fixed-function performance monitoring counters that can be done is to enable

or disable counting, and write the counter value itself.

The S5 processor core contains two fixed-function performance monitoring counters.

Fixed-Function Cycle Counter (mcycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock

cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-

write and 64 bits wide. Reads of mcycle return all 64 bits of the mcycle CSR.

Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of

instructions the hart has retired since some arbitrary time in the past. The minstret counter is

read-write and 64 bits wide. Reads of minstret return all 64 bits of the minstret CSR.

3.8.3 Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The S5

HPM includes two addtitional event counters, mhpmcounter3 and mhpmcounter4. These pro-

grammable event counters are read-write and 64 bits wide. The hardware counters themselves

are implemented as 40-bit counters on the S5 core series. These hardware counters can be

written to in order to initialize the counter value.

3.8.4 Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used

to program the corresponding event counters. These event selector CSRs are 64-bit WARL reg-

isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the

upper bits form a mask of events in that class.

Figure 8: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if

mhpmevent3 is set to 0x4200, then mhpmcounter3 will increment when eitehr a load instruction

or a conditional branch instruction retires. An event selector of 0 means "count nothing".

Copyright © 2017–2020, SiFive Inc. All rights reserved. 26

3.8.5 Event Selector Encodings

Table 6 describes the event selector encodings available. Events are categorized into two

classes based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can

be programmed by setting the respective Event Mask bit for a given event class. An event

selector encoding of 0 means "count nothing". Multiple events will cause the counter to incre-

ment any time any of the selected events occur.

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpmeventX[7:0]=0

Bit Description

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

Microarchitectural Events , mhpmeventX[7:0]=1

Bit Description

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

Memory System Events, mhpmeventX[7:0]=2

Bit Description

8 Instruction cache miss

9 Memory-mapped I/O access

Table 6: mhpmevent Register

Event mask bits that are writable for any event class are writable for all classes. Setting an

event mask bit that does not correspond to an event defined in Table 6 has no effect for current

implementations. However, future implementations may define new events in that encoding

space, so it is not recommended to program unsupported values into the mhpmevent registers.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 27

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use

combinations of these events to count new, unique events. For example, to determine the aver-

age cycles per load from a data memory subsystem, program one counter to count "Data cache/

DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide

the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction

count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types

counting occurrences and event types counting cycles.

3.8.6 Counter-Enable Registers

The 32-bit counter-enable register mcounteren controls the availability of the hardware perfor-

mance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these

enable registers does not affect the underlying counters, which continue to increment when not

accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction

retire, or hpmcounterX register while executing in U-mode will cause an illegal instruction

exception. When one of these bits is set, access to the corresponding register is permitted in the

next implemented privilege mode, U-mode.

mcounteren is a WARL register. Any of the bits may contain a hardwired value of zero, indicat-

ing reads to the corresponding counter will cause an illegal instruction exception when execut-

ing in a less-privileged mode.

3.9 Ports

This section describes the Port interfaces to the S5 core.

3.9.1 Front Port

The Front Port can be used be external masters to read from and write into the memory system

utilizing any port in the Core Complex. The ITIM and DTIM can also be accessed through the

Front Port.

The S51 User Guide describes the implementation details of the Front Port.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 28

3.9.2 Peripheral Port

The Peripheral Port is used to interface with lower speed peripherals and also supports code

execution. When a device is attached to the Peripheral Port, it is expected that there are no

other masters connected to that device.

The Peripheral Port supports the RISC‑V standard Atomic (A) extension, which is useful for pro-

gramming peripherals. See Chapter 5 for more information on the instructions added by this

extension.

Consult Section 4.1 for futher information about the Peripheral Port and its Physical Memory

Attributes.

See the S51 User Guide for a description of the Peripheral Port implementation in the S51.

3.9.3 System Port

The System Port is used to interface with lower performance memory, like SRAM, memory-

mapped I/O (MMIO), and higher speed peripherals. The System Port also supports code execu-

tion.

Consult Section 4.1 for futher information about the System Port and its Physical Memory Attrib-

utes.

See the S51 User Guide for a description of the System Port implementation in the S51.

Note that the System Port does not support Atomic instructions.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 29

Chapter 4

Physical Memory Attributes and Memory

Map

This chapter describes the S51 physical memory attributes and memory map.

4.1 Physical Memory Attributes Overview

The memory map is divided into different regions covering on-core-complex memory, system

memory, peripherals, and empty holes. Physical memory attributes (PMAs) describe the proper-

ties of the accesses that can be made to each region in the memory map. These properties

encompass the type of access that may be performed: execute, read, or write. As well as other

optional attributes related to the access, such as supported access size, alignment, atomic

operations, and cacheability.

RISC‑V utilizes a simpler approach than other processor architectures in defining the attributes

of memory accesses. Instead of defining access characteristics in page table descriptors or

memory protection logic, the properties are fixed for memory regions or may only be modified in

platform-specific control registers. As most systems don’t require the ability to modify PMAs,

SiFive cores only support fixed PMAs, which are set at design time. This results in a simpler

design with lower gate count and power savings, and an easier programming interface.

External memory map regions are accessed through a specific port type and that port type is

used to define the PMAs. The port types are Memory, Peripheral, and System. Memory map

regions defined for internal memory and internal control regions also have a predefined PMA

based on the underlying contents of the region.

The assigned PMA properties and attributes for S51 memory regions are shown in Table 7 and

Table 8 for external and internal regions, respectively.

The configured memory regions of the S51 are listed with their attributes in Table 9.

30

Port Type Access Properties Attributes

Peripheral Port Read, Write, Execute Atomics, Instruction Cacheable

System Port Read, Write, Execute Instruction Cacheable

Table 7: Physical Memory Attributes for External Regions

Region Access Properties Attributes

CLINT Read, Write Atomics

DTIM Read, Write, Execute Atomics

Debug None N/A

Error Device Read, Write, Execute Atomics

ITIM Read, Write, Execute Atomics, Instruction Speculation

PLIC Read, Write Atomics

Reserved None N/A

Table 8: Physical Memory Attributes for Internal Regions

All memory map regions support word, half-word, and byte size data accesses.

Atomic access support enables the RISC‑V standard Atomic (A) Extension for atomic instruc-

tions. These atomic instructions are further documented in Section 3.4 for the S5 core.

No region supports unaligned accesses. An unaligned access will generate the appropriate trap:

instruction address misaligned, load address misaligned, or store/AMO address misaligned.

All accesses to the Debug Module from the core in non-Debug mode will trap.

The Physical Memory Protection unit is capable of controlling access properties based on

address ranges, not ports. It has no control over the attributes of an address range, however.

4.2 Memory Map

The memory map of the S51 is shown in Table 9.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 31

Base Top Attr. Description

0x00_0000_0000 0x00_0000_0FFF Debug

0x00_0000_1000 0x00_0000_2FFF Reserved

0x00_0000_3000 0x00_0000_3FFF RWX A Error Device

0x00_0000_4000 0x00_017F_FFFF Reserved

0x00_0180_0000 0x00_0180_3FFF RWX A ITIM

0x00_0180_4000 0x00_01FF_FFFF Reserved

0x00_0200_0000 0x00_0200_FFFF RW A CLINT

0x00_0201_0000 0x00_0BFF_FFFF Reserved

0x00_0C00_0000 0x00_0FFF_FFFF RW A PLIC

0x00_1000_0000 0x00_1FFF_FFFF Reserved

0x00_2000_0000 0x00_3FFF_FFFF RWXI A Peripheral Port (512 MiB)

0x00_4000_0000 0x00_5FFF_FFFF RWXI System Port (512 MiB)

0x00_6000_0000 0x00_7FFF_FFFF Reserved

0x00_8000_0000 0x00_8000_FFFF RWX A DTIM (64 KiB)

0x00_8001_0000 0x00_FFFF_FFFF Reserved

0x01_0000_0000 0x0F_FFFF_FFFF RWXI A Peripheral Port (60 GiB)

0x10_0000_0000 0xFF_FFFF_FFFF RWXI System Port (960 GiB)

Table 9: S51 Memory Map. Physical Memory Attributes: R–Read, W–Write,

X–Execute, I–Instruction Cacheable, D–Data Cacheable, A–Atomics

Copyright © 2017–2020, SiFive Inc. All rights reserved. 32

Chapter 5

Programmer’s Model

The S51 implements the 64-bit RISC‑V architecture. The following chapter provides a reference

for programmers and an explanation of the extensions supported by RV64IMAC.

This chapter contains a high-level discussion of the RISC‑V instruction set architecture and

additional resources which will assist software developers working with RISC‑V products. The

S51 is an implementation of the RISC‑V RV64IMAC architecture, and is guaranteed to be com-

patible with all applicable RISC‑V standards. RV64IMAC can emulate almost any other RISC‑V

ISA extension.

5.1 Base Instruction Formats

RISC‑V base instructions are fixed to 32 bits in length and must be aligned on a four-byte

boundary in memory. RISC‑V ISA keeps the source (rs1 and rs2) and destination (rd) registers

at the same position in all formats to simplify decoding, with the exception of the 5-bit immedi-

ates used in CSR instructions.

The various formats are described in Table 10 below.

Format Description

R Format for register-register arithmetic/logical operations.

I Format for register-immediate ALU operations and loads.

S Format for stores.

B Format for branches.

U Format for 20-bit upper immediate instructions.

J Format for jumps.

Table 10: Base Instruction Formats

067111214151920242531

opcoderdfunct3rs1rs2funct7

Figure 9: R-Type

33

06711121415192031

opcoderdfunct3rs1imm[11:0]

Figure 10: I-Type

067111214151920242531

opcodeimm[4:0]funct3rs1rs2imm[11:5]

Figure 11: S-Type

067811121415192024253031

opcode

im
m

[1
1

]

imm[4:1]funct3rs1rs2imm[10:5]

im
m

[1
2

]

Figure 12: B-Type

067111231

opcoderdimm[31:12]

Figure 13: U-Type

06711121920213031

opcoderdimm[19:12]

im
m

[1
1

]

imm[10:1]

im
m

[2
0

]

Figure 14: J-Type

The opcode field partially specifies an instruction, combined with funct7 + funct3 which

describe what operation to perform. Each register field (rs1, rs2, rd) holds a 5-bit unsigned inte-

ger (0-31) corresponding to a register number (x0 - x31). Sign-extension is one of the most criti-

cal operations on immediates (particularly for XLEN>32), and in RISC‑V the sign bit for all

immediates is always held in bit 31 of the instruction to allow sign-extension to proceed in paral-

lel with instruction decoding.

5.2 I Extension: Standard Integer Instructions

This section discusses the standard integer instructions supported by RISC‑V. Integer computa-

tional instructions don’t cause arithmetic exceptions.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 34

5.2.1 R-Type (Register-Based) Integer Instructions

funct7 funct3 opcode Instruction

00000000 rs2 rs1 000 rd 0110011 ADD

01000000 rs2 rs1 000 rd 0110011 SUB

00000000 rs2 rs1 001 rd 0110011 SLL

00000000 rs2 rs1 010 rd 0110011 SLT

00000000 rs2 rs1 011 rd 0110011 SLTU

00000000 rs2 rs1 100 rd 0110011 XOR

00000000 rs2 rs1 101 rd 0110011 SRL

01000000 rs2 rs1 101 rd 0110011 SRA

00000000 rs2 rs1 110 rd 0110011 OR

00000000 rs2 rs1 111 rd 0110011 AND

Instruction Description

ADD rd, rs1, rs2 Performs the addition of rs1 and rs2, result stored in rd.

SUB rd, rs1, rs2 Performs the subtraction of rs2 from rs1, result stored in rd.

SLL rd, rs1, rs2 Logical left shift (zeros are shifted into the lower bits) shift

amount is encoded in the lower 5 bits of rs2.

SLT rd, x0, rs2 Signed and compare sets rd to 1 if rs2 is not equal to zero, oth-

erwise sets rd to zero.

SLTU rd, x0, rs2 Unsigned compare sets rd to 1 if rs2 is not equal to zero, other-

wise sets rd to zero.

SRL rd, rs1, rs2 Logical right shift (zeros are shifted into the lower bits) shift

amount is encoded in the lower 5 bits of rs2.

SRA rd, rs1, rs2 Arithmetic right shift, shift amount is encoded in the lower 5 bits

of rs2.

OR rd, rs1, rs2 Bitwise logical OR.

AND rd, rs1, rs2 Bitwise logical AND.

XOR rd, rs1, rs2 Bitwise logical XOR.

Below is an example of an ADD instruction.

add x18, x19, x10

067111214151920242531

Reg-Reg OPrd=18ADDrs1=19rs2=10ADD

11001100100100011001010100000000

Figure 15: ADD Instruction Example

5.2.2 I-Type Integer Instructions

For I-Type integer instruction, one field is different from R-format. rs2 and funct7 are replaced

by the 12-bit signed immediate, imm[11:0], which can hold values in range [-2048, +2047]. The

Copyright © 2017–2020, SiFive Inc. All rights reserved. 35

immediate is always sign-extended to 32-bits before being used in an arithmetic operation. Bits

[31:12] receive the same value as bit 11.

imm func3 opcode Instruction

imm[11:0] rs1 000 rd 0010011 ADDI

imm[11:0] rs1 010 rd 0010011 SLTI

imm[11:0] rs1 011 rd 0010011 SLTIU

imm[11:0] rs1 100 rd 0010011 XORI

imm[11:0] rs1 110 rd 0010011 ORI

imm[11:0] rs1 111 rd 0010011 ANDI

00000000 shamnt rs1 001 rd 0010011 SLLI

00000000 shamnt rs1 101 rd 0010011 SRLI

01000000 shamnt rs1 001 rd 0010011 SRAI

One of the higher-order immediate bits is used to distinguish "shift right logical" (SRLI) from

"shift right arithmetic" (SRAI).

Instruction Description

ADDI Adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is

ignored and the result is simply the low 64-bits of the result. ADDI rd, rs1, 0 is

used to implement the MV rd, rs1 assembler pseudoinstruction.

SLTI Set less than immediate. Places the value 1 in register rd if register rs1 is less

than the sign extended immediate when both are treated as signed numbers,

else 0 is written to rd.

SLTIU Compares the values as unsigned numbers (i.e., the immediate is first sign-

extended to 64-bits then treated as an unsigned number). Note: SLTIU rd,

rs1, 1 sets rd to 1 if rs1 equals zero, otherwise sets rd to 0 (assembler

pseudo instruction SEQZ rd, rs).

XORI Bitwise XOR on register rs1 and the sign-extended 12-bit immediate and place

the result in rd.

ORI Bitwise OR on register rs1 and the sign-extended 12-bit immediate and place

the result in rd.

ANDI Bitwise AND on register rs1 and the sign-extended 12-bit immediate and place

the result in rd.

SLLI Shift Left Logical. The operand to be shifted is in rs1, and the shift amount is

encoded in the lower 5 bits of the I-immediate field.

SRLI Shift Right Logical. The operand to be shifted is in rs1, and the shift amount is

encoded in the lower 5 bits of the I-immediate field.

SRAI Shift Right Arithmetic. The operand to be shifted is in rs1, and the shift amount

is encoded in the lower 5 bits of the I-immediate field (the original sign bit is

copied into the vacated upper bits).

Shift-by-immediate instructions only use lower 5 bits of the immediate value for shift amount

(can only shift by 0-31 bit positions).

Copyright © 2017–2020, SiFive Inc. All rights reserved. 36

Below is an example of an ADDI instruction.

addi x15, x1, -50

06711121415192031

OP-Immrd=15ADDrs1=1imm=-50

11001001111000010000011100111111

Figure 16: ADDI Instruction Example

5.2.3 I-Type Load Instructions

For I-Type load instructions, a 12-bit signed immediate is added to the base address in register

rs1 to form the memory address. In Table 11 below, funct3 field encodes size and signedness

of load data.

imm func3 opcode Instruction

imm[11:0] rs1 000 rd 00000011 LB

imm[11:0] rs1 001 rd 00000011 LH

imm[11:0] rs1 010 rd 00000011 LW

imm[11:0] rs1 100 rd 00000011 LBU

imm[11:0] rs1 101 rd 00000011 LHU

Table 11: I-Type Load Instructions

Instruction Description

LB rd, rs1, imm Load Byte, loads 8 bits (1 byte) and sign-extends to fill destina-

tion 32-bit register.

LH rd, rs1, imm Load Half-Word. Loads 16 bits (2 bytes) and sign-extends to fill

destination 32-bit register.

LW rd, rs1, imm Load Word, 32 bits.

LBU rd, rs1, imm Load Unsigned Byte (8-bit).

LHU rd, rs1, imm Load Unsigned Half-Word, which zero-extends 16 bits to fill des-

tination 32-bit register.

Below is an example of a LW instruction.

lw x14, 8(x2)

06711121415192031

LOADrd=14LWrs1=2imm=+8

11000000111001001000000100000000

Figure 17: LW Instruction Example

Copyright © 2017–2020, SiFive Inc. All rights reserved. 37

5.2.4 S-Type Store Instructions

Store instructions need to read two registers: rs1 for base memory address and rs2 for data to

be stored, as well as an immediate offset. The effective byte address is obtained by adding reg-

ister rs1 to the sign-extended 12-bit offset. Note that stores don’t write a value to the register

file, as there is no rd register used by the instruction. In RISC‑V, the lower 5 bits of immediate

are moved to where the rd field was in other instructions, and the rs1/rs2 fields are kept in

same place. The registers are kept always in the same place because a critical path for all oper-

ations includes fetching values from the registers. By always placing the read sources in the

same place, the register file can read the registers without hesitation. If the data ends up being

unnecessary (e.g. I-Type), it can be ignored.

067111214151920242531

opcodeimm[4:0]funct3rs1rs2imm[11:5]

STOREoffset[4:0]widthbasesrcoffset[11:5]

Figure 18: Store Instructions

imm func3 imm opcode Instruction

imm[11:5] rs2 rs1 000 imm[4:0] 01000011 SB

imm[11:5] rs2 rs1 001 imm[4:0] 01000011 SH

imm[11:5] rs2 rs1 010 imm[4:0] 01000011 SW

Table 12: S-Type Store Instructions

Instruction Description

SB rs2, imm[11:0](rs1) Store 8-bit value from the low bits of register rs2 to memory.

SH rs2, imm[11:0](rs1) Store 16-bit value from the low bits of register rs2 to memory.

SW rs2,

imm[11:0](rs1)

Store 32-bit value from the low bits of register rs2 to memory.

Below is an example SW instruction.

sw x14, 8(x2)

067111214151920242531

STOREoffset[4:0]SWrs1=2rs2=14offset[11:5]

11000100001001001000011100000000

Figure 19: SW Instruction Example

5.2.5 Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a

signed offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the

jump instruction to form the jump target address. Jumps can therefore target a ±1 MiB range.

JAL stores the address of the instruction following the jump (pc+4) into register rd. The stan-

dard software calling convention uses x1 as the return address register and x5 as an alternate

link register.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 38

06711121920213031

opcoderdimm[19:12]i11imm[10:1]i20

JALdestoffset[20:1]

Figure 20: JAL Instruction

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target

address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then set-

ting the least-significant bit of the result to zero. The address of the instruction following the

jump (pc+4) is written to register rd. Register x0 can be used as the destination if the result is

not required.

06711121415192031

opcoderdfunct3rs1imm[11:0]

JALRdest0baseoffset[11:0]

Figure 21: JALR Instruction

Both JAL and JALR instructions will generate an instruction-address-misaligned exception if the

target address is not aligned to a four-byte boundary.

Instruction Description

JAL rd, imm[20:1] Jump and link

JALR rd, rs1, imm[11:0] Jump and link register

5.2.6 Conditional Branches

All branch instructions use the B-Type instruction format. The 12-bit immediate represents val-

ues -4096 to +4094 in 2-byte increments. The offset is sign-extended and added to the address

of the branch instruction to give the target address. The conditional branch range is ±4 KiB.

067811121415192024253031

opcodei11imm[4:1]funct3rs1rs2imm[10:5]i12

BRANCH
BRANCH
BRANCH

offset[11,4:1]
offset[11,4:1]
offset[11,4:1]

BEQ/BNE
BLT[U]
BGE[U]

src1
src1
src1

src2
src2
src2

offset[12,10:5]
offset[12,10:5]
offset[12,10:5]

Figure 22: Branch Instructions

imm func3 imm opcode Instruction

imm[12,10:5] rs2 rs1 000 imm[4:1,11] 110011 BEQ

imm[12,10:5] rs2 rs1 001 imm[4:1,11] 110011 BNE

imm[12,10:5] rs2 rs1 100 imm[4:1,11] 110011 BLT

imm[12,10:5] rs2 rs1 101 imm[4:1,11] 110011 BGE

imm[12,10:5] rs2 rs1 110 imm[4:1,11] 110011 BLTU

imm[12,10:5] rs2 rs1 111 imm[4:1,11] 110011 BGEU

Copyright © 2017–2020, SiFive Inc. All rights reserved. 39

Instruction Description

BEQ rs1, rs2,

imm[12:1]

Take the branch if registers rs1 and rs2 are equal.

BNE rs1, rs2,

imm[12:1]

Take the branch if registers rs1 and rs2 are unequal.

BLT rs1, rs2, imm[12:1] Take the branch if rs1 is less than rs2.

BGE rs1, rs2,

imm[12:1]

Take the branch if rs1 is greater than or equal to rs2.

BLTU rs1, rs2,

imm[12:1]

Take the branch if rs1 is less than rs2 (unsigned).

BGEU rs1, rs2,

imm[12:1]

Take the branch if rs1 is greater than or equal to rs2

(unsigned).

Note

Software should be optimized such that the sequential code path is the most common path,

with less-frequently taken code paths placed out of line. Software should also assume that

backward branches will be predicted taken and forward branches as not taken, at least the

first time they are encountered. Dynamic predictors should quickly learn any predictable

branch behavior.

ISA Base Instruction Assembly pseudo instruction

BEQ rs, x0, offset beqz rs,offset Branch if = zero

5.2.7 Upper-Immediate Instructions
067111231

opcoderdimm[31:12]

LUI
AUIPC

dest
dest

U-immediate[31:12]
U-immediate[31:12]

Figure 23: Upper-Immediate Instructions

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI

places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest

12 bits with zeros. Together with an ADDI to set low 12 bits, can create any 32-bit value in a reg-

ister using two instructions (LUI/ADDI).

For example:

LUI x10, 0x87654 # x10 = 0x8765_4000

ADDI x10, x10, 0x321 # x10 = 0x8765_4321

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type

format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with

Copyright © 2017–2020, SiFive Inc. All rights reserved. 40

zeros, and adds this offset to the address of the AUIPC instruction, then places the result in reg-

ister rd.

5.2.8 Memory Ordering Operations

067111214151920212223242526272831

opcoderdfunct3rs1SWSRSOSIPWPRPOPIfm

MISC-MEM0FENCE0successorpredecessorFM

Figure 24: FENCE Instructions

The FENCE instruction is used to order device I/O and memory accesses as viewed by other

RISC‑V harts and external devices or coprocessors. Any combination of device input (I), device

output (O), memory reads (R), and memory writes (W) may be ordered with respect to any com-

bination of the same. These operations are discussed further in Section 5.9.

5.2.9 Environment Call and Breakpoints

SYSTEM instructions are used to access system functionality that might require privileged access

and are encoded using the I-type instruction format. These can be divided into two main

classes: those that atomically read-modify-write control and status registers (CSRs), and all

other potentially privileged instructions.

5.2.10 NOP Instruction

06711121415192031

opcoderdfunctrs1imm[11:0]

OP-IMM0ADDI00

Figure 25: NOP Instructions

The NOP instruction does not change any architecturally visible state, except for advancing the

pc and incrementing any applicable performance counters. NOP is encoded as ADDI x0, x0, 0.

5.3 M Extension: Multiplication Operations
067111214151920242531

opcoderdfunct3rs1rs2funct7

OP
OP-32

dest
dest

MUL/MULH[[S]U]
MULW

multiplicand
multiplicand

multiplier
multiplier

MULDIV
MULDIV

Figure 26: Multiplication Operations

Copyright © 2017–2020, SiFive Inc. All rights reserved. 41

Instruction Description

MUL rd, rs1, rs2 Multiplication of rs1 by rs2 and places the lower 64-bits in the

destination register.

MULH rd, rs1, rs2 Multiplication that return the upper 64-bits of the full 2×64-bit

product.

MULHU rd, rs1, rs2 Unsigned multiplication that return the upper 64-bits of the full

2×64-bit product.

MULHSU rd, rs1, rs2 Signed rs1 multiple unsigned rs2 that return the upper 64-bits of

the full 2×64-bit product.

MULW rd, rs1, rs2 RV64 instruction that multiplies the lower 32 bits of the source

registers, placing the sign-extension of the lower 32 bits of the

result into the destination register.

Combining MUL and MULH together creates one multiplication operation.

5.3.1 Division Operations
067111214151920242531

opcoderdfunct3rs1rs2funct7

OP
OP-32

dest
dest

DIV[U]/REM[U]
DIV[U]W/REM[U]W

dividend
dividend

divisor
divisor

MULDIV
MULDIV

Figure 27: Division Operations

Instruction Description

DIV rd, rs1, rs2 64-bits by 64-bits signed division of r1 by rs2 rounding towards

zero.

DIVU rd, rs1, rs2 64-bits by 64-bits unsigned division of r1 by rs2 rounding

towards zero.

REM rd, rs1, rs2 Remainder of the corresponding division.

REMU rd, rs1, rs2 Unsigned remainder of the corresponding division.

DIVW rd, rs1, rs2 RV64 instruction. Signed divide the lower 32 bits of rs1 by the

lower 32 bits of rs2.

DIVUW rd, rs1, rs2 RV64 instruction. Unsigned divide the lower 32 bits of rs1 by

the lower 32 bits of rs2.

REMW rd, rs1, rs2 Singed remainder.

REMUW rd, rs1, rs2 Unsigned remainder sign-extend the 32-bit result to 64 bits,

including on a divide by zero.

MULDIV rd, rs1, rs Multiply Divide.

Combining DIV and REM together creates on division operation.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 42

5.4 A Extension: Atomic Operations

Atomic operations are defined as operations that automatically read-modify-write memory to

support sychronization between multiple RISC‑V harts running in the same memory space.

5.4.1 Atomic Memory Operations (AMOs)

The atomic memory operation (AMO) instructions perform read-modify-write operations for mul-

tiprocessor synchronization. These AMO instructions atomically load a data value from the

address in rs1, place the value into register rd, apply a binary operator to the loaded value and

the original value in rs2, then store the result back to the address in rs1.

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

AMO
AMO
AMO
AMO
AMO
AMO
AMO

dest
dest
dest
dest
dest
dest
dest

width
width
width
width
width
width
width

addr
addr
addr
addr
addr
addr
addr

src
src
src
src
src
src
src

ordering
ordering
ordering
ordering
ordering
ordering
ordering

AMOSWAP.W/D
AMOADD.W/D
AMOAND.W/D
AMOOR.W/D
AMOXOR.W/D

AMOMAX[U].W/D
AMOMIN[U].W/D

Figure 28: Atomic Memory Operations

Instruction Description

AMOSWAPW/D Word / doubleword swap.

AMOADD.W/D Word / doubleword add.

AMOAND.W/D Word / doubleword and.

AMOOR.W/D Word / doubleword or.

AMOXOR.W/D Word / doubleword xor.

AMOMIN.W/D Word / doubleword minimum.

AMOMINU.W/D Unsigned word / doubleword minimum.

AMOMAX.W/D Word / doubleword maximum.

AMOMAXU.W/D Unsigned word / doubleword maximum.

For RV64, 32-bit AMOs always sign-extend the value placed in rd.

5.5 C Extension: Compressed Instructions

The C Extension reduces static and dynamic code size by adding short 16-bit instruction encod-

ings for common operations. The C extension can be added to any of the base ISAs (RV32,

RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%–60%

of the RISC‑V instructions in a program can be replaced with RVC instructions, resulting in a

25%–30% code-size reduction. The C extension is compatible with all other standard instruction

extensions. The C extension allows 16-bit instructions to be freely intermixed with 32-bit instruc-

tions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition

of the C extension, no instructions can raise instruction-address-misaligned exceptions. It is

important to note that the C extension is not designed to be a stand-alone ISA, and is meant to

be used alongside a base ISA. The compressed 16-bit instruction format is designed around the

assumption that x1 is the return address register and x2 is the stack pointer.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 43

5.5.1 Compressed 16-bit Instruction Formats

01267111215

oprs2rd/rs1funct4

Figure 29: CR Format - Register

0126711121315

opimmrd/rs1immfunct3

Figure 30: CI Format - Immediate

01267121315

oprs2immfunct3

Figure 31: CSS Format - Stack-relative Store

01245121315

oprd´immfunct3

Figure 32: CIW Format - Wide Immediate

0124567910121315

oprd´immrs1´immfunct3

Figure 33: CL Format - Load

0124567910121315

oprs2´immrs1´immfunct3

Figure 34: CS Format - Store

012456791015

oprs2´funct2rd´/ rs1´funct6

Figure 35: CA Format - Arithmetic

01267910121315

opoffset`rs1´offsetfunct3

Figure 36: CJ Format - Jump

5.5.2 Stack-Pointed-Based Loads and Stores

The compressed load instructions are expressed in CI format.

0126711121315

opimmrdimmfunct3

C2
C2
C2
C2
C2

offset[4:2|7:6]
offset[4:3|8:6]
offset[4|9:6]

offset[4:2|7:6]
offset[4:3|8:6]

dest != 0
dest != 0
dest != 0

dest
dest

offset[5]
offset[5]
offset[5]
offset[5]
offset[5]

C.LWSP
C.LDSP
C.LQSP

C.FLWSP
C.FLDSP

Figure 37: Stack-Pointed-Based Loads

Copyright © 2017–2020, SiFive Inc. All rights reserved. 44

Instruction Description

C.LWSP Loads a 32-bit value from memory into register rd.

C.LDSP RV64C Instruction which loads a 64-bit value from memory into

register rd.

C.LQSP RV128C loads a 128-bit value from memory into register rd.

C.FLWSP RV32FC Instruction that loads a single-precision floating-point

value from memory into floating-point register rd.

C.FLDSP RV32DC/RV64DC Instruction that loads a double-precision

floating-point value from memory into floating-point register rd.

The compressed store instructions are expressed in CSS format.

01267121315

oprs2immfunct3

C2
C2
C2
C2
C2

src
src
src
src
src

offset[5:2|7:6]
offset[5:3|8:6]
offset[5:4|9:6]
offset[5:2|7:6]
offset[5:3|8:6]

C.SWSP
C.SDSP
C.SQSP

C.FSWSP
C.FSDSP

Figure 38: Stack-Pointed-Based Stores

Instruction Description

C.LWSP Loads a 32-bit value from memory into register rd.

C.SWSP Stores a 32-bit value in register rs2 to memory.

C.SDSP RV64C/RV128C instruction that stores a 64-bit value in register

rs2 to memory.

C.SQSP RV128C instruction that stores a 128-bit value in register rs2 to

memory.

C.FSWSP RV32FC instruction that stores a single-precision floating-point

value in floating-point register rs2 to memory.

C.FSDSP RV32DC/RV64DC instruction that stores a double-precision

floating-point value in floating-point register rs2 to memory.

5.5.3 Register-Based Loads and Stores

The compressed register-based load instructions are expressed in CL format.

0124567910121315

oprd´immrs1´immfunct3

C0
C0
C0
C0
C0

dest
dest
dest
dest
dest

offset[2|6]
offset[7:6]
offset[7:6]
offset[2|6]
offset[7:6]

base
base
base
base
base

offset[5:3]
offset[5:3]

offset[5|4|8]
offset[5:3]
offset[5:3]

C.LW
C.LD
C.LQ

C.FLW
C.FLD

Figure 39: Register-Based Loads

Copyright © 2017–2020, SiFive Inc. All rights reserved. 45

Instruction Description

C.LW Loads a 32-bit value from memory into register rd.

C.LD RV64C/RV128C-only instruction that loads a 64-bit value from

memory into register rd.

C.LQ RV128C-only instruction that loads a 128-bit value from memory

into register rd.

C.FLW RV32FC-only instruction that loads a single-precision floating-

point value from memory into floating-point register rd.

C.FLD RV32DC/RV64DC-only instruction that loads a double-precision

floating-point value from memory into floating-point register rd.

The compressed register-based store instructions are expressed in CS format.

0124567910121315

oprs2´immrs1´immfunct3

C0
C0
C0
C0
C0

src
src
src
src
src

offset[2|6]
offset[7:6]
offset[7:6]
offset[2|6]
offset[7:6]

base
base
base
base
base

offset[5:3]
offset[5:3]

offset[5|4|8]
offset[5:3]
offset[5:3]

C.SW
C.SD
C.SQ

C.FSW
C.FSD

Figure 40: Register-Based Stores

Instruction Description

C.SW Stores a 32-bit value in register rs2 to memory.

C.SD RV64C/RV128C instruction that stores a 64-bit value in register

rs2 to memory.

C.SQ RV128C instruction that stores a 128-bit value in register rs2 to

memory.

C.FSW RV32FC instruction that stores a single-precision floating-point

value in floating point register rs2 to memory.

C.FSD RV32DC/RV64DC instruction that stores a double-precision

floating-point value in floating-point register rs2 to memory.

5.5.4 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions.

The unconditional jump instructions are expressed in CJ format.

012121315

opimmfunct3

C1
C1

offset[11|4|9:8|10|6|7|3:1|5]
offset[11|4|9:8|10|6|7|3:1|5]

C.J
C.JAL

Figure 41: Unconditional Jump Instructions

Instruction Description

C.J Unconditional control transfer.

C.JAL RV32C instruction that performs the same operation as C.J, but

additionally writes the address of the instruction following the

jump (pc+2) to the link register, x1.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 46

The unconditional control transfer instructions are expressed in CR format.

01267111215

oprs2rs1funct4

C2
C2

0
0

src != 0
src != 0

C.JR
C.JR

Figure 42: Unconditional Control Transfer Instructions

Instruction Description

C.JR Performs an unconditional control transfer to the address in reg-

ister rs1.

C.JALR Performs the same operation as C.JR, but additionally writes the

address of the instruction following the jump (pc+2) to the link

register, x1.

The conditional control transfer instructions are expressed in CB format.

01267910121315

opimmrs1´immfunct3

C1
C1

offset[7:6|2:1|5]
offset[7:6|2:1|5]

src
src

offset[8|4:3]
offset[8|4:3]

C.BEQZ
C.BNEZ

Figure 43: Conditional Control Transfer Instructions

Instruction Description

C.BEQZ Conditional control transfers. Takes the branch if the value in

register rs1′ is zero.

C.BNEZ Conditional control transfers. Takes the branch if rs1′ contains

a nonzero value.

5.5.5 Integer Computational Instructions

Integer Constant-Generation Instructions

0126711121315

opimmrdimm[5]funct3

C1
C1

imm[4:0]
imm[16:12]

dest != 0
dest != {0,2}

imm[5]
nzimm[17]

C.LI
Cl.LUI

Figure 44: Constant Generation Instructions

Instruction Description

C.LI Loads the sign-extended 6-bit immediate, imm, into register rd.

C.LUI Loads the non-zero 6-bit immediate field into bits 17–12 of the

destination register, clears the bottom 12 bits, and sign-extends

bit 17 into all higher bits of the destination

Copyright © 2017–2020, SiFive Inc. All rights reserved. 47

Integer Register-Immediate Operations

0126711121315

opimm[4:0]rd/rs1imm[5]funct3

C1
C1
C1

nzimm[4:0]
imm[4:0]

nzimm[4|6|8:7|5]

dest != 0
dest != 0

2

nzimm[5]
imm[5]

nzimm[9]

C.ADDI
C.ADDIW

C.ADDI16SP

Instruction Description

C.ADDI Adds the non-zero sign-extended 6-bit immediate to the value in

register rd then writes the result to rd.

C.ADDIW RV64C/RV128C instruction that performs the same computation

but produces a 32-bit result, then sign-extends result to 64 bits.

C.ADDI16SP Adds the non-zero sign-extended 6-bit immediate to the value in

the stack pointer (sp=x2), where the immediate is scaled to rep-

resent multiples of 16 in the range (-512,496). C.ADDI16SP is

used to adjust the stack pointer in procedure prologues and epi-

logues.

01245121315

oprd´immfunct3

C0destnzuimm[5:4|9:6|2|3]C.ADDI4SPN

Instruction Description

C.ADDI4SPN Adds a zero-extended non-zero immediate, scaled by 4, to the

stack pointer, x2, and writes the result to rd′.

0126711121315

opshamt[4:0]rd/rs1shamt[5]funct3

C2shamt[4:0]dest != 0shamt[5]C.SLLI

Instruction Description

C.SLLI Performs a logical left shift of the value in register rd then writes

the result to rd. The shift amount is encoded in the shamt field.

0126791011121315

opshamt[4:0]rd´/rs1´funct2shamt[5]funct3

C1
C1

shamt[4:0]
shamt[4:0]

dest
dest

C.SRLI
C.SRAI

shamt[5]
shamt[5]

C.SRLI
C.SRAI

Instruction Description

C.SRLI Logical right shift of the value in register rd′ then writes the

result to rd′. The shift amount is encoded in the shamt field.

C.SRAI Arithmetic right shift of the value in register rd′ then writes the

result to rd′. The shift amount is encoded in the shamt field.

0126791011121315

opimm[4:0]rd´/rs1´funct2imm[5]funct3

C1imm[4:0]destC.ANDIimm[5]C.ANDI

Copyright © 2017–2020, SiFive Inc. All rights reserved. 48

Instruction Description

C.ANDI Computes the bitwise AND of the value in register rd′ and the

sign-extended 6-bit immediate, then writes the result to rd′.

Integer Register-Register Operations

01267111215

oprs2rd/rs1funct3

C2
C2

src != 0
src != 0

dest != 0
dest != 0

C.MV
C.ADD

Instruction Description

C.MV Copies the value in register rs2 into register rd.

C.ADD Adds the values in registers rd and rs2 and writes the result to

register rd.

012456791015

oprs2´funct2rd´/rs1´funct6

C1
C1
C1
C1
C1

src
src
src
src
src

C.AND
C.OR
C.XOR
C.SUB

C.ADDW
C.SUBW

dest
dest
dest
dest
dest

C.AND
C.OR
C.XOR
C.SUB

C.ADDW
C.SUBW

Instruction Description

C.AND Computes the bitwise AND of the values in registers rd′ and

rs2′.

C.OR Computes the bitwise OR of the values in registers rd′ and rs2′.

C.XOR Computes the bitwise XOR of the values in registers rd′ and r2′.

C.SUB Subtracts the value in register rs2′ from the value in register rd′.

C.ADDW RV64C/RV128C-only instruction that adds the values in regis-

ters rd′ and rs2′, then sign-extends the lower 32 bits of the sum

before writing the result to register rd.

C.SUBW RV64C/RV128C-only instruction that subtracts the value in reg-

ister rs2′ from the value in register rd′, then sign-extends the

lower 32 bits of the difference before writing the result to register

rd.

Defined Illegal Instruction

A 16-bit intruction with all bits zero is permanently reserved as an illegal instruction.

0126711121315

00000

00000

Figure 45: Defined Illegal Instruction

5.6 Zicsr Extension: Control and Status Register

Copyright © 2017–2020, SiFive Inc. All rights reserved. 49

Instructions

RISC‑V defines a separate address space of 4096 Control and Status registers associated with

each hart. The defined instructions access counter, timers and floating point status registers.

06711121415192031

opcoderdfunct3rs1csr

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

dest
dest
dest
dest
dest
dest

CSRRW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI

source
source
source

uimm[4:0]
uimm[4:0]
uimm[4:0]

source/dest
source/dest
source/dest
source/dest
source/dest
source/dest

Figure 46: Zicsr Instructions

Instruction Description

CSRRW rd, rs1 csr Instruction atomically swaps values in the CSRs and integer reg-

isters.

CSRRS rd, rs1 csr Instruction reads the value of the CSR, zeroextends the value to

64-bits, and writes it to integer register rd. The initial value in

integer register rs1 is treated as a bit mask that specifies bit

positions to be set in the CSR.

CSRRC rd, rs1 csr Instruction reads the value of the CSR, zeroextends the value to

64-bits, and writes it to integer register rd. The initial value in

integer register rs1 is treated as a bit mask that specifies bit

positions to be cleared in the CSR.

CSRRWI rd, rs1 csr Update the CSR using an 64-bit value obtained by zero-extend-

ing a 5-bit unsigned immediate (uimm[4:0]) field encoded in the

rs1 field instead of a value from an integer register.

CSRRSI rd, rs1 csr Update the CSR using an 64-bit value obtained by zero-extend-

ing a 5-bit unsigned immediate (uimm[4:0]) field encoded in the

rs1 field instead of a value from an integer register.

CSRRCI rd, rs1 csr If the uimm[4:0] field is zero, then these instructions will not write

to the CSR.

The CSRRWI, CSRRSI, and CSRRCI instructions are similar in kind to CSRRW, CSRRS, and

CSRRC respectively, except in that they update the CSR using an 64-bit value obtained by

zero-extending a 5-bit unsigned immediate (uimm[4:0]) field encoded in the rs1 field instead of a

value from an integer register. For CSRRSI and CSRRCI, these instructions will not write to the

CSR if the uimm[4:0] field is zero, and they shall not cause any of the size effecs that might oth-

erwise occur on a CSR write. For CSRRWI, if rd = x0, then the instruction shall not read the

CSR and shall not cause any of the side effects that might occur on a CSR read. Both CSRRSI

and CSRRCI will always read the CSR and cause any read side effects regardless of the rd and

rs1 fields.

Table 13 shows if a CSR reads or writes given a particular CSR.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 50

Register Operand

Instruction rd rs1 read CSR? write CSR?

CSRRW x0 - no yes

CSRRW !x0 - yes yes

CSRRS/C - x0 yes no

CSRRS/C - !x0 yes yes

Immediate Operand

Instruction rd uimm read CSR? write CSR?

CSRRWI x0 - no yes

CSRRWI !x0 - yes yes

CSRRS/CI - 0 yes no

CSRRS/CI - !0 yes yes

Table 13: CSR Reads and Writes

5.6.1 Control and Status Registers

The control and status registers (CSRs) are only accessible using variations of the CSRR

(Read) and CSRRW (Write) instructions. Only the CPU executing the csr instruction can read or

write these registers, and they are not visible by software outside of the core they reside on. The

standard RISC‑V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.

Attempts to access a non-existent CSR raise an illegal instruction exception. Attempts to access

a CSR without appropriate privilege level or to write a read-only register also raise illegal

instruction. A read/write register might also contain some bits that are read-only, in which case

writes to the read-only bits are ignored. Each core functionality has its own control and status

registers which are described in the corresponding section.

5.6.2 Defined CSRs

The following tables describe the currently defined CSRs, categorized by privilege level. The

usage of the CSRs below is implementation specific. CSRs are only accessbile when operating

within a specific access mode (user mode, machine mode, and Debug mode). Therefore,

attempts to access a non-existent CSR raise an illegal instruction exception, and attempts to

access a CSR without appropriate privilege level or to write a read-only register also raise illegal

instruction exceptions. A read/write register might also contain some bits that are read-only, in

which casewrites to the read-only bits are ignored.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 51

Number Privilege Name Description

User Trap Setup

0x000 RW ustatus User status register.

0x004 RW uie User interrupt-enable register.

0x005 RW utvec User trap handler base address.

User Trap Handling

0x040 RW uscratch Scratch register for use trap handlers.

0x041 RW uepc User exception program counter.

0x042 RW ucause User trap cause.

0x043 RW ubadaddr User bad address.

0x044 RW uip User interrupt pending.

User Floating-Point CSRs

0x001 RW fflags Floating-Point Accrued Exceptions.

0x002 RW frm Floating-Point Dynamic Rounding Mode.

0x003 RW fcsr Floating-Point Control and Status Register (frm +

fflags).

User Counter/Timers

0xC00 RO cycle Cycle counter for RDCYCLE instruction.

0xC01 RO time Timer for RDTIME instruction.

0xC02 RO instret Instructions-retired counter for RDINSTRET

instruction.

0xC03 RO hpmcounter3 Performance-monitoring counter.

0xC04 RO hpmcounter4 Performance-monitoring counter.

…

0xC1F RO hpmcounter31 Performance-monitoring counter.

0xC80 RO cycleh Upper 32 bits of cycle, RV32I only.

0xC81 RO timeh Upper 32 bits of time, RV32I only.

0xC82 RO instreth Upper 32 bits of instret, RV32I only.

0xC83 RO hpmcounter3h Upper 32bits of hpmcounter3, RV32I only.

0xC84 RO hpmcounter4h Upper 32bits of hpmcounter4, RV32I only.

…

0xC9F RO hpmcounter31h Upper 32bits of hpmcounter31, RV32I only.

Table 14: User Mode CSRs

Copyright © 2017–2020, SiFive Inc. All rights reserved. 52

Number Privilege Name Description

Supervisor Trap Setup

0x100 RW sstatus Supervisor status register.

0x102 RW sedeleg Supervisor exception delegation register.

0x103 RW sideleg Supervisor interrupt delegation register.

0x104 RW sie Supervisor interrupt-enable register.

0x105 RW stvec Supervisor trap handler base address.

Supervisor Trap Handling

0x140 RW sscratch Scratch register for supervisor trap handlers.

0x141 RW sepc Supervisor exception program counter.

0x142 RW scause Supervisor trap cause.

0x143 RW sbadaddr Supervisor bad address.

0x144 RW sip Supervisor interrupt pending.

Supervisor Protection and Translation

0x180 RW sptbr Page-table base register.

Table 15: Supervisor Mode CSRs

Copyright © 2017–2020, SiFive Inc. All rights reserved. 53

Number Privilege Name Description

Machine Information Registers

0xF11 RO mvendorid Vendor ID.

0xF12 RO marchid Architecture ID.

0xF13 RO mimpid Implementation ID.

0xF14 RO mhartid Hardware thread ID.

Machine Trap Setup

0x300 RW mstatus Machine status register.

0x301 RW misa ISA and extensions.

0x302 RW medeleg Machine exception delegation register.

0x303 RW mideleg Machine interrupt delegation register.

0x304 RW mie Machine interrupt-enable register.

0x305 RW mtvec Machine trap-hanlder base address.

Machine Trap Handling

0x340 RW mscratch Scratch register for machine trap handlers.

0x341 RW mepc Machine exception program counter.

0x342 RW mcause Machine trap cause.

0x343 RW mbadaddr Machine bad address.

0x344 RW mip Machine interrupt pending.

Machine Protection and Translation

0x380 RW mbase Base register.

0x381 RW mbound Bound register.

0x382 RW mibase Instruction base register.

0x383 RW mibound Instruction bound register.

0x384 RW mdbase Data base register.

0x385 RW mdbound Data bound register.

Machine Counter/Timers

0xB00 RW mcycle Machine cycle counter.

0xB02 RW minstret Machine instruction-retired counter.

0xB03 RW mhpmcounter3 Machine performance-monitoring counter.

0xB04 RW mhpmcounter4 Machine performance-monitoring counter.

…

0xB1F RW mhpmcounter31 Machine performance-monitoring counter.

0xB80 RW mcycleh Upper 32 bits of mcycle, RV32I only.

0xB82 RW minstreth Upper 32 bits of minstret, RV32I only.

0xB83 RW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32I only.

0xB84 RW mhpmcounter4h Upper 32 bits of mhpmcounter4, RV32I only.

…

0xB9F RW mhpmcounter31h Upper 32 bits of mhpmcounter31, RV32I only.

Debug/Trace Register (shared with Debug Mode)

0x7A0 RW tselect Debug/Trace trigger register select.

0x7A1 RW tdata1 First Debug/Trace trigger data register.

Table 16: Machine Mode CSRs

Copyright © 2017–2020, SiFive Inc. All rights reserved. 54

Number Privilege Name Description

0x7A2 RW tdata2 Second Debug/Trace trigger data register.

0x7A3 RW tdata3 Third Debug/Trace trigger data register.

Table 16: Machine Mode CSRs

Number Privilege Name Description

0x7B0 RW dcsr Debug control and status register.

0x7B1 RW dpc Debug PC.

0x7B2 RW dscratch Debug scratch register.

Table 17: Debug Mode Registers

5.6.3 CSR Access Ordering

On a given hart, explicit and implicit CSR access are performed in program order with respect to

those instructions whose execution behavior is affected by the state of the accessed CSR. In

particular, a CSR access is performed after the execution of any prior instructions in program

order whose behavior modifies or is modified by the CSR state and before the execution of any

subsequent instructions in program order whose behavior modifies or is modified by the CSR

state.

Furthermore, a CSR read access instruction returns the accessed CSR state before the execu-

tion of the instruction, while a CSR write access instruction updates the accessed CSR state

after the execution of the instruction. Where the above program order does not hold, CSR

accesses are weakly ordered, and the local hart or other harts may observe the CSR accesses

in an order different from program order. In addition, CSR accesses are not ordered with respect

to explicit memory accesses, unless a CSR access modifies the execution behavior of the

instruction that performs the explicit memory access or unless a CSR access and an explicit

memory access are ordered by either the syntactic dependencies defined by the memory model

or the ordering requirements defined by the Memory-Ordering PMAs. To enforce ordering in all

other cases, software should execute a FENCE instruction between the relevant accesses. For

the purposes of the FENCE instruction, CSR read accesses are classified as device input (I), and

CSR write accesses are classified as device output (O). For more about the FENCE instruc-

tions, see Section 5.9. For CSR accesses that cause side effects, the above ordering con-

straints apply to the order of the initiation of those side effects but does not necessarily apply to

the order of the completion of those side effects.

5.6.4 SiFive RISC‑V Implementation Version Registers

mvendorid

The value in mvendorid is 0x489, corresponding to SiFive’s JEDEC number.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 55

marchid

The value in marchid indicates the overall microarchitecture of the core and at SiFive we use

this to distinguish between core generators. The RISC‑V standard convention separates

marchid into open-source and proprietary namespaces using the most-significant bit (MSB) of

the marchid register; where if the MSB is clear, the marchid is for an open-source core, and if

the MSB is set, then marchid is a proprietary microarchitecture. The open-source namespace is

managed by the RISC‑V Foundation and the proprietary namespace is managed by SiFive.

SiFive’s E3 and S5 cores are based on the open-source 3/5-Series microarchitecture, which

has a Foundation-allocated marchid of 1. Our other generators are numbered according to the

core series.

Value Core Generator

0x1 3/5-Series Processor (E3, S5, U5 series)

Table 18: Core Generator Encoding of marchid

mimpid

The value in mimpid holds the release tag for the generator used to build this implementation.

Reading Implementation Version Registers

To read the mvendorid, marchid and mimpid registers, simply replace mimpid with mvendorid

or marchid as needed.

In C:

uintptr_t mimpid;

__asm__ volatile("csrr %0, mimpid" : "=r"(mimpid));

In Assembly:

csrr a5, mimipd

5.7 Base Counters and Timers

RISC‑V ISAs provide a set of up to 32×64-bit performance counters and timers that are accessi-

ble via unprivileged 64-bit read-only CSR registers 0xC00–0xC1F. The first three of these

(CYCLE, TIME, and INSTRET) have dedicated functions; while the remaining counters, if imple-

mented, provide programmable event counting.

The S51 implements mcycle, mtime, and minstret counters, which have dedicated functions:

cycle count, real-time clock, and instructions-retired, respectively. The timer functionality is

based on the mtime register. Additionally, the S51 implements event counters in the form of

mhpmcounter, which is used to monitor user requested events.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 56

06711121415192031

opcoderdfunct3rs1csr

SYSTEM
SYSTEM
SYSTEM

dest
dest
dest

CSRRS
CSRRS
CSRRS

0
0
0

RDCYCLE[H]
RDTIME[H]

RDINSTRET[H]

Figure 47: Timers & Counters

Instruction Description

RDCYCLE rd, rs1,

cycle

Reads the low 64-bits of the cycle CSR which holds a count of

the number of clock cycles executed by the processor core on

which the hart is running from an arbitrary start time in the past.

RDTIME rd, rs1, time Reads the low 64-bits of the time CSR, which counts wall-clock

real time that has passed from an arbitrary start time in the past.

RDINSTRET rd, rs1,

instret

reads the low 64-bits of the instret CSR, which counts the num-

ber of instructions retired by this hart from some arbitrary start

point in the past.

RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions read the full 64 bits of the cycle,

time, and instret counters. The RDCYCLE pseudoinstruction reads the low 64-bits of the

cycle CSR (mcycle), which holds a count of the number of clock cycles executed by the proces-

sor core on which the hart is running from an arbitrary start time in the past. The RDTIME

pseudoinstruction reads the low 64-bits of the time CSR (mtime), which counts wall-clock real

time that has passed from an arbitrary start time in the past The RDINSTRET pseudoinstruction

reads the low 64-bits of the instret CSR (minstret), which counts the number of instructions

retired by this hart from some arbitrary start point in the past The rate at which the cycle counter

advances is rtc_clock. To determine the current rate (cycles per second) of instruction execu-

tion, call the metal_timer_get_timebase_frequency API. The

metal_timer_get_timebase_frequency and additional APIs are described in Section 5.7.2

below.

Number Privilege Name Description

0xC00 RO cycle Cycle counter for RDCYCLE instruction

0xC01 RO time Timer for RDTIME instruction

0xC02 RO instret Instruction-retired counter for RDINSTRET instruction

5.7.1 Timer Register

mtime is a 64-bit read-write register that contains the number of cycles counted from the

rtc_toggle signal described in the S51 User Guide. On reset, mtime is cleared to zero.

5.7.2 Timer API

The APIs below are used for reading and manipulating the machine timer. Other APIs are

described in more detail within the Freedom Metal documentation. https://sifive.github.io/free-

dom-metal-docs/

Copyright © 2017–2020, SiFive Inc. All rights reserved. 57

Functions

int metal_timer_get_cyclecount(int hartid, unsigned long long *cyclecount)

Read the machine cycle count.

Return

0 upon success

Parameters

• hartid: The hart ID to read the cycle count of

• cyclecount: The variable to hold the value

int metal_timer_get_timebase_frequency(int hartid, unsigned long long *timebase)

Get the machine timebase frequency.

Return

0 upon success

Parameters

• hartid: The hart ID to read the cycle count of

• timebase: The variable to hold the value

int metal_timer_set_tick(int hartid, int second)

Set the machine timer tick interval in seconds.

Return

0 upon success

Parameters

• hartid: The hart ID to read the cycle count of

• second: The number of seconds to set the tick interval to

5.8 ABI - Register File Usage and Calling Conventions

RV64IMAC has 32 x registers that are each 64 bits wide.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 58

Register ABI Name Description Saver

x0 zero Hard-wired zero -

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer -

x4 tp Thread pointer -

x5 t0 Temporary / alternate link register Caller

x6-7 t1-2 Temporaries Caller

x8 s0/fp Saved-register / frame-ponter Callee

x9 s1 Saved register Callee

x10-11 a0-1 Function arguments / return values Caller

x12-17 a2-7 Function arguments Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller

Floating-Point Registers

f0-7 ft0-7 FP temporaries Caller

f8-9 fs0-1 FP saved registers Callee

f10-11 fa0-1 FP arguments / return values Caller

f12-17 fa2-7 FP arguments Caller

f18-27 fa2-11 FP saved registers Callee

f28-31 ft8-11 FP temporaries Caller

Table 19: RISC‑V Registers

The programmer counter PC hold the address of the current instruction.

• x1 / ra - holds the return address for a call.

• x2 / sp - stack pointer, points to the current routine stack.

• x8 / fp / s0 - frame pointer, points to the bottom of the top stack frame.

• x3 / gp - global pointer, points into the middle of the global data section.

The common definition is: .data + 0x800. RISC‑V immediate values are 12-bit signed val-

ues, which is +/- 2048 in decimal or +/- 0x800 in hex. So that global pointer relative

accesses can reach their full extent, the global pointer point + 0x800 into the data section.

The linker can then relax LUI+LW, LUI+SW into gp-relative LW or SW. i.e. shorter instruction

sequences and access most global data using LW at gp +/- offset

LW t0 , 0x800(gp)
LW t1 , 0x7FF(gp)

• x4 / tp - thread pointer, point to thread-local storage (TLS-mostly used in linux and RTOS).

If you create a variable in TLS, every thread has its own copy of the variable, i.e. changes to

the variable are local to the thread. This is a static area of memory that gets copied for each

thread in a program. It is also used to create libraries that have thread-safe functions,

Copyright © 2017–2020, SiFive Inc. All rights reserved. 59

because of the fact that each call to a function has its copy of the same global data, so it’s

safe.

5.8.1 RISC‑V Assembly

RISC‑V instructions have opcodes and operands.

Figure 48: RISC‑V Assembly Example

Assembly C Description

add x1,x2,x3 a = b + c a=x1, b=x2, c=x3

sub x3,x4,x5 d = e - f d=x3, e=x4, f=x5

add x0,x0,x0 NOP Writes to x0 are always ignored

add x3,x4,x0 f = g f=x3, g=x4

addi x3,x4,-10 f = g - 10 f=x3, g=x4

lw x10,12(x13) # 12 = 3x4

add x11,x12,x10

int A[100];

g = h + A[3];

Reg x10 gets A[3]

g=x11, h=x12

lw x10,12(x13) # 12 = 3x4

add x10,x12,x10

sw x10,40(x13) # 40 = 10x4

int A[100];

A[10] = h + A[3];

Reg x10 gets A[3]

h=x12

Reg x10 gets h + A[3]

bne x13,x14,done

add x10,x11,x12

done:

if (i == j)

f = g + h;

f=x10, g=x11, h=x12, i=x13, j=x14

bne x10,x14,else

add x10,x11,x12

j done

else: sub x10,x11,x12

done:

if (i == j)

f = g + h;

else

f = g - h;

f=x10, g=x11, h=x12, i=x13, j=x14

5.8.2 Assembler to Machine Code

The following flowchart describes how the assembler converts the RISC‑V assembly code to

machine code.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 60

Figure 49: RISC‑V Assembly to Machine Code

Copyright © 2017–2020, SiFive Inc. All rights reserved. 61

5.8.3 Calling a Function (Calling Convention)

1. Put parameters in place where function can access them.

2. Transfer control to function.

3. Acquire local resources needed for tunction.

4. Perform function task.

5. Place result values where calling code can access and restore any registers might

have used.

6. Return control to original caller.

Caller-saved The function invoked can do whatever it likes with the registers. Callee-saved If a

function wants to use registers it needs to store and restore them.

Take, for example, the following function:

int leaf(int g, int h, int i, int j) {
int f;
f = (g+h) - (i+j);
return f;

}

In this function above, arguments are passed in a0, a1, a2 and a3. The return value is returned

in a0.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 62

addi sp, sp, -8 # adjust stack for 2 items
sw s1, 4(sp) # save 1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0,a0,a1 # s0 = g + h
add s1,a2,a3 # s1 = i + j
sub a0,s0,s1 # return value (g + h) - (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi s1, 4(sp) # adjust stack to delete 2 items
jr ra # jump back to calling routine

In the assembly above, notice that the stack pointer was decremented by 8 to make room to

save the registers. Also, s1 and s0 are saved and will be stored at the end.

Nested Functions

In the case of nested function calls, values held in a0-7 and ra will be clobbered.

Take, for example, the following function:

int sumSquare(int x, int y) {
return mult(x,x) + y;

}

In the function above, a function called sumSquare is calling mult. To execute the function,

there’s a value in ra that sumSquare wants to jump back to, but this value will be overwritten by

the call to mult.

To avoid this, the sumSquare return address must be saved before the call to mult. To save the

the return address of sumSquare, the function can utilize stack memory. The user can use stack

memory to preserve automatic (local) variables that don’t fit within the registers.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 63

Figure 50: Stack Memory during Function Calls

Consider the assembly for sumSquare below:

sumSquare:
addi sp,sp,-8 # reserve space on stack
sw ra, 4(sp) # save return address
sw a1, 0(sp) # save y
mv a1,a0 # mult(x,x)
jal mult # call mult
lw a1, 0(sp) # restore y
add a0,a0,a1 # mult()+y
lw ra, 4(sp) # get return address
addi sp,sp,8 # restore stack
mult:...

5.9 Memory Ordering - FENCE Instructions

In the RISC‑V ISA, each thread, referred to as a hart, observes its own memory operations as if

they executed sequentially in program order. RISC‑V also has a relaxed memory model, which

requires explicit FENCE instructions to guarantee the ordering of memory operations.

The FENCE instructions include FENCE and FENCE.I. The FENCE instruction simply ensures that

the memory access instructions before the FENCE instruction get committed before the FENCE

instruction is committed. It does not guarantee that those memory access instructions have

actually completed. For example, a load instruction before a FENCE instruction can commit with-

out waiting for its value to come back from the memory system. FENCE.I functions the same as

FENCE, as well as flushes the instruction cache.

For example, without FENCE instructions:

Hart 1 executes:

Load X
Store Y
Store Z

Because of relaxed memory model, Hart 2 could see stores/loads arranged in any order:

Store Z
Load X
Store Y

With FENCE instructions:

Hart 1 executes:

Load X
Store Y
FENCE
Store Z

Copyright © 2017–2020, SiFive Inc. All rights reserved. 64

Hart 2 sees:

Store Y
Load X
Store Z

With FENCE instructions, Hart 2 is forced to see the Load X and the Store Y prior to the Store Z,

but could arbitrarily see Store Y before Load X or Load X before Store Y. Functionally, FENCE

instructions order the completion of older memory accesses prior to newer accesses. However,

unnecessary FENCE instructions slow processes and can hide bugs, so it is essential to identify

where and when FENCE should be used.

5.10 Boot Flow

This process is managed as part of the Freedom Metal source code. The freedom-metal boot

code supports single core boot or multi-core boot, and contains all the necessary initialization

code to enable every core in the system.

1. ENTRY POINT: File: freedom-metal/src/entry.S, label: _enter.

2. Initialize global pointer gp register using the generated symbol __global_pointer$.

3. Write mtvec register with early_trap_vector as default exception handler.

4. Clear chicken bits (usage for this register is not made public).

5. Read mhartid into register a0 and call _start, which exists in crt0.S.

6. We now transition to File: freedom-metal/gloss/crt0.S, label: _start.

7. Initialize stack pointer, sp, with _sp generated symbol. Harts with mhartid of one or

larger are offset by (_sp + __stack_size × mhartid). The __stack_size field is

generated in the linker file.

8. Check if mhartid == __metal_boot_hart and run the init code if they are equal. All

other harts skip init and go to the Post-Init Flow, step #15.

9. Boot Hart Init Flow begins here.

10. Init data section to destination in defined RAM space.

11. Copy ITIM section, if ITIM code exists, to destination.

12. Zero out bss section.

13. Call atexit library function that registers the libc and freedom-metal destructors

to run after main returns.

14. Call the __libc_init_array library function, which runs all functions marked with

__attribute__((constructor)).

a. For example, PLL, UART, L2 if they exist in the design. This method

provides full early initialization prior to entering the main application.

15. Post-Init Flow Begins Here.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 65

16. Call the C routine __metal_synchronize_harts, where hart 0 will release all harts

once their individual msip bits are set. The msip bit is typically used to assert a soft-

ware interrupt on individual harts, however interrupts are not yet enabled, so msip in

this case is used as a gatekeeping mechanism.

17. Check misa register to see if floating-point hardware is part of the design, and set

up mstatus accordingly.

18. Single or multi-hart design redirection step.

a. If design is a single hart only, or a multi-hart design without a C-imple-

mented function secondary_main, ONLY the boot hart will continue to

main().

b. For multi-hart designs, all other CPUs will enter sleep via WFI instruc-

tion via the weak secondary_main label in crt0.S, while boot hart runs

the application program.

c. In a multi-hart design which includes a C-defined secondary_main func-

tion, all harts will enter secondary_main as the primary C function.

5.11 Linker File

The linker file generates important symbols that are used in the boot code. The linker file

options are found in the freedom-e-sdk/bsp path.

There are usually three different linker file options:

• metal.default.lds — Use flash and RAM sections

• metal.ramrodata.lds — Place read only data in RAM for better performance

• metal.scratchpad.lds — Places all code + data sections into available RAM location

Each linker option can be selected by specifying LINK_TARGET on the command line.

For example:

make PROGRAM=hello TARGET=design-rtl CONFIGURATION=release LINK_TARGET=scratchpadsoft-
ware

The metal.default.lds linker file is selected by default when LINK_TARGET is not specified. If

there is a scenario where a custom linker is required, one of the supplied linker files can be

copied and renamed and used for the build. For example, if a new linker file named

metal.newmap.lds was generated, this can be used at build time by specifying

LINK_TARGET=newmap on the command line.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 66

5.11.1 Linker File Symbols

The linker file generates symbols that are used by the startup code, so that software can use

these symbols to assign the stack pointer, initialize or copy certain RAM sections, and provide

the boot hart information. These symbols are made visible to software using the PROVIDE key-

word.

For example:

__stack_size = DEFINED(__stack_size) ? __stack_size : 0x400;
PROVIDE(__stack_size = __stack_size);

Generated Linker Symbols

A description list of the generated linker symbols is shown below.

__metal_boot_hart

This is an integer number to describe which hart runs the main init flow. The mhartid CSR

contains the integer value for each hart. For example, hart 0 has mhartid==0, hart 1 has

mhartid==1, and so on. An assembly example is shown below, where a0 already contains

the mhartid value.

/* If we're not hart 0, skip the initialization work */
la t0, __metal_boot_hart
bne a0, t0, _skip_init

An example on how to use this symbol in C code is shown below.

extern int __metal_boot_hart;
int boot_hart = (int)&__metal_boot_hart;

Additional linker file generated symbols, along with descriptions are shown below.

__metal_chicken_bit

Status bit to tell startup code to zero out the Feature Disable CSR. Details of this register

are internal use only.

__global_pointer$

Static value used to write the gp register at startup.

_sp

Address of the end of stack for hart 0, used to initialize the beginning of the stack since the

stack grows lower in memory. On a multi-hart system, the start address of the stack for

each hart is calculated using (_sp + __stack_size × mhartid)

metal_segment_bss_target_start

metal_segment_bss_target_end

Used to zero out global data mapped to .bss section.

• Only __metal_boot_hart runs this code.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 67

metal_segment_data_source_start

metal_segment_data_target_start

metal_segment_data_target_end

Used to copy data from image to its destination in RAM.

• Only __metal_boot_hart runs this code.

metal_segment_itim_source_start

metal_segment_itim_target_start

metal_segment_itim_target_end

Code or data can be placed in itim sections using the

__attribute__((section(".itim"))).

• When this attribute is applied to code or data, the

metal_segment_itim_source_start, metal_segment_itim_target_start, and

metal_segment_itim_target_end symbols get updated accordingly, and these sym-

bols allow the startup code to copy code and data into the ITIM area.

◦ Only __metal_boot_hart runs this code.

Note

At the time of this writing, the boot flow does not support C++ projects

5.12 RISC‑V Compiler Flags

5.12.1 arch, abi, and mtune

RISC‑V targets are described using three arguments:

1. -march=ISA: selects the architecture to target.

2. -mabi=ABI: selects the ABI to target.

3. -mtune=CODENAME: selects the microarchitecture to target.

-march

This argument controls which instructions and registers are available for the compiler, as

defined by the RISC‑V user-level ISA specification.

The RISC‑V ISA with 32, 32-bit integer registers and the instructions for multiplication would be

denoted as RV32IM. Users can control the set of instructions that GCC uses when generating

assembly code by passing the lower-case ISA string to the -march GCC argument: for example

Copyright © 2017–2020, SiFive Inc. All rights reserved. 68

`-march=rv32im. On RISC‑V systems that don’t support particular operations, emulation rou-

tines may be used to provide the missing functionality.

Example:

double dmul(double a, double b) {
return a * b;

}

will compile directly to a FP multiplication instruction when compiled with the D extension:

$ riscv64-unknown-elf-gcc test.c -march=rv64imafdc -mabi=lp64d -o- -S -O3
dmul:

fmul.d fa0,fa0,fa1
ret

but will compile to an emulation routine without the D extension:

$ riscv64-unknown-elf-gcc test.c -march=rv64i -mabi=lp64 -o- -S -O3
dmul:

add sp,sp,-16
sd ra,8(sp)
call __muldf3
ld ra,8(sp)
add sp,sp,16
jr ra

Similar emulation routines exist for the C intrinsics that are trivially implemented by the M and F

extensions.

-mabi

-mabi selects the ABI to target. This controls the calling convention (which arguments are

passed in which registers) and the layout of data in memory. The -mabi argument to GCC spec-

ifies both the integer and floating-point ABIs to which the generated code complies. Much like

how the -march argument specifies which hardware generated code can run on, the -mabi

argument specifies which software-generated code can link against. We use the standard nam-

ing scheme for integer ABIs (ilp32 or lp64), with an argumental single letter appended to

select the floating-point registers used by the ABI (ilp32 vs. ilp32f vs. ilp32d). In order for

objects to be linked together, they must follow the same ABI.

RISC‑V defines two integer ABIs and three floating-point ABIs.

• ilp32: int, long, and pointers are all 32-bits long. long long is a 64-bit type, char is 8-bit, and

short is 16-bit.

• lp64: long and pointers are 64-bits long, while int is a 32-bit type. The other types remain

the same as ilp32.

The floating-point ABIs are a RISC‑V specific addition:

Copyright © 2017–2020, SiFive Inc. All rights reserved. 69

• "" (the empty string): No floating-point arguments are passed in registers.

• f: 32-bit and smaller floating-point arguments are passed in registers. This ABI requires the

F extension, as without F there are no floating-point registers.

• d: 64-bit and smaller floating-point arguments are passed in registers. This ABI requires the

D extension.

arch/abi Combinations

• march=rv32imafdc -mabi=ilp32d: Hardware floating-point instructions can be generated

and floating-point arguments are passed in registers. This is like the -mfloat-abi=hard

argument to ARM’s GCC.

• march=rv32imac -mabi=ilp32: No floating-point instructions can be generated and no

floating-point arguments are passed in registers. This is like the -mfloat-abi=soft argu-

ment to ARM’s GCC.

• march=rv32imafdc -mabi=ilp32: Hardware floating-point instructions can be generated,

but no floating-point arguments will be passed in registers. This is like the

-mfloat-abi=softfp argument to ARM’s GCC, and is usually used when interfacing with

soft-float binaries on a hard-float system.

• march=rv32imac -mabi=ilp32d: Illegal, as the ABI requires floating-point arguments are

passed in registers but the ISA defines no floating-point registers to pass them in.

Example:

double dmul(double a, double b) {
return b * a;

}

If neither the ABI or ISA contains the concept of floating-point hardware then the C compiler

cannot emit any floating-point-specific instructions. In this case, emulation routines are used to

perform the computation and the arguments are passed in integer registers:

$ riscv64-unknown-elf-gcc test.c -march=rv32imac -mabi=ilp32 -o- -S -O3
dmul:

mv a4,a2
mv a5,a3
add sp,sp,-16
mv a2,a0
mv a3,a1
mv a0,a4
mv a1,a5
sw ra,12(sp)
call __muldf3
lw ra,12(sp)
add sp,sp,16
jr ra

The second case is the exact opposite of this one: everything is supported in hardware. In this

case we can emit a single fmul.d instruction to perform the computation.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 70

$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32d -o- -S -O3
dmul:

fmul.d fa0,fa1,fa0
ret

The third combination is for users who may want to generate code that can be linked with code

designed for systems that don’t subsume a particular extension while still taking advantage of

the extra instructions present in a particular extension. This is a common problem when dealing

with legacy libraries that need to be integrated into newer systems. For this purpose the com-

piler arguments and multilib paths designed to cleanly integrate with this workflow. The gener-

ated code is essentially a mix between the two above outputs: the arguments are passed in the

registers specified by the ilp32 ABI (as opposed to the ilp32d ABI, which could pass these

arguments in registers) but then once inside the function the compiler is free to use the full

power of the RV32IMAFDC ISA to actually compute the result. While this is less efficient than

the code the compiler could generate if it was allowed to take full advantage of the D-extension

registers, it’s a lot more efficient than computing the floating-point multiplication without the D-

extension instructions

$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32 -o- -S -O3
dmul:

add sp,sp,-16
sw a0,8(sp)
sw a1,12(sp)
fld fa5,8(sp)
sw a2,8(sp)
sw a3,12(sp)
fld fa4,8(sp)
fmul.d fa5,fa5,fa4
fsd fa5,8(sp)
lw a0,8(sp)
lw a1,12(sp)
add sp,sp,16
jr ra

5.13 Compilation Process

GCC driver script is actually running the preprocessor, then the compiler, then the assembler

and finally the linker. If the user runs GCC with the --save-temps argument, several intermedi-

ate files will be generated.

$ riscv64-unknown-linux-gnu-gcc relocation.c -o relocation -O3 --save-temps

• relocation.i: The preprocessed source, which expands any preprocessor directives

(things like #include or #ifdef).

• relocation.s: The output of the actual compiler, which is an assembly file (a text file in the

RISC‑V assembly format).

• relocation.o: The output of the assembler, which is an un-linked object file (an ELF file,

but not an executable ELF).

• relocation: The output of the linker, which is a linked executable (an executable ELF file).

Copyright © 2017–2020, SiFive Inc. All rights reserved. 71

5.14 Large Code Model Workarounds

RISC‑V software currently requires that linked symbols reside within a 32-bit range. There are

two types of code models defined for RISC‑V, medlow and medany. The medany code model

generates auipc/ld pairs to refer to global symbols, which allows the code to be linked at any

address, while medlow generates lui/ld pairs to refer to global symbols, which restricts the code

to be linked around address zero. They both generate 32-bit signed offsets for referring to sym-

bols, so they both restrict the generated code to being linked within a 2 GiB window. When

building software, the code model parameter is passed into the RISC‑V toolchain and it defines

a method to generate the necessary instruction combinations to access global symbols within

the software program. This is done using -mcmodel=medany/medlow. For 32-bit architectures,

we use the medlow code model, while medany is used for 64-bit architectures. This is controlled

within the ‘setting.mk’ file in freedom-e-sdk/bsp folder.

The real problem occurs when:

1. Total program size exceeds 2 GiB, which is rare

2. When global symbols within a single compiled image are required to reside in a

region outside of the 32-bit space

Example for symbols within 32-bit address space:

MEMORY
{
ram (wxa!ri) : ORIGIN = 0x80,000,000, LENGTH = 0x4000
flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000
}

Example for symbols outside 32-bit address space:

MEMORY
{
ram (wxa!ri) : ORIGIN = 0x100000000, LENGTH = 0x4000 /* Updated ORIGIN from
0x80000000 */
flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000
}

If a software example uses the above memory map, and uses either medlow or medany code

models, it will not link successfully. Generated errors will generally contain the following phrase:

relocation truncated to fit:

5.14.1 Workaround Example #1

Even if global symbols cannot be linked with the toolchain, we can still access any 64-bit

addressable space using pointers. The following example is a straightforward approach to

accessing data within any 64-bit addressable space:

// Create defines for new memory region
#define LARGE_DATA_SECTION_ADDRESS 0x100000000

Copyright © 2017–2020, SiFive Inc. All rights reserved. 72

#define LARGE_DATA_SECTION_SIZE_IN_BYTES 0x4000
#define DWORD_SIZE 8

int main(void) {

/***/
/* Example #1 - defining and accessing data outside 32-bit range using array

pointer */

/***/
uint32_t idx;
uint64_t *data_array, addr;

data_array = (uint64_t *)LARGE_DATA_SECTION_ADDRESS;
for (addr = 0, idx = 0; addr < LARGE_DATA_SECTION_SIZE_IN_BYTES; addr +=

DWORD_SIZE, idx++) {

// Simply writing data to our region outside of 32-bit range
data_array[idx] = addr;
}

}

5.14.2 Workaround Example #2

Here we use an existing freedom-metal data structure to define a new region and API to

access attributes of the region.

#include <metal/memory.h> // required for data struct

// Create defines for new memory region
#define LARGE_DATA_SECTION_ADDRESS 0x100000000
#define LARGE_DATA_SECTION_SIZE_IN_BYTES 0x4000
#define DWORD_SIZE 8

// Create our struct using existing metal_memory type in freedom-metal
const struct metal_memory large_data_mem_struct;
const struct metal_memory large_data_mem_struct = {

._base_address = LARGE_DATA_SECTION_ADDRESS,

._size = LARGE_DATA_SECTION_SIZE_IN_BYTES,

._attrs = {.R = 1, .W = 1, .X = 0, .C = 1, .A = 0},
};

int main(void) {
// Example #2 - Creating data structure which defines 64-bit addressable regions,
// using existing structure type to define base addr, size, and permissions

size_t _large_data_size;
uintptr_t _large_data_base_addr;
int _atomics_enabled, _cachable_enabled;
uint64_t *large_data_array;

_large_data_base_addr = metal_memory_get_base_address(&large_data_mem_struct);
_large_data_size = metal_memory_get_size(&large_data_mem_struct);
_atomics_enabled = metal_memory_supports_atomics(&large_data_mem_struct);
_cachable_enabled = metal_memory_is_cachable(&large_data_mem_struct);

Copyright © 2017–2020, SiFive Inc. All rights reserved. 73

large_data_array = (uint64_t *)_large_data_base_addr;

// Access our new memory region
// large_data_array[x] = 0x0;
// ... add functional code ...

return 0;
}

This example can be used if multiple data regions are required with different attributes. Once

the base address is assigned from the required data structure, then pointers can be used to

access memory, similar to Example #1 above. The existing struct and API format allows for mul-

tiple regions to be created easily.

5.15 Pipeline Hazards

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

5.15.1 Read-After-Write Hazards

Read-after-Write (RAW) hazards occur when an instruction tries to read a register before a pre-

ceding instruction tries to write to it. This hazard describes a situation where an instruction

refers to a result that has not been calculated or retrieved. This situation is possible because

even though an instruction was executed after a prior instruction, the prior instruction may only

have processed partly through the core pipeline.

Example:

• Instruction 1: x1 + x3 is saved in x2

• Instruction 2: x2 + x3 is saved in x4

The first instruction is calculating a value (x1 + x3) to be saved in x2. The second instruction is

going to use the value of x2 to compute a result to be saved in x4. However, in the core

pipeline, when operations are fetched for the second operation, the results from the first opera-

tion have not yet been saved.

5.15.2 Write-After-Write Hazards

Write-after-write (WAW) hazards occur when an instruction tries to write an operand before it is

written by a preceding instruction.

Example:

• Instruction 1: x4 + x7 is saved in x2

• Instruction 2: x1 + x3 is saved in x2

Copyright © 2017–2020, SiFive Inc. All rights reserved. 74

Write-back of instruction 2 must be delayed until instruction 1 finishes executing.

In general, MMIO accesses stall when there is a hazard on the result caused by either RAW or

WAW. So, instructions may be scheduled to avoid stalls.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 75

Chapter 6

Custom Instructions

These custom instructions use the SYSTEM instruction encoding space, which is the same as the

custom CSR encoding space, but with funct3=0.

6.1 CFLUSH.I.L1

• Opcode 0xFC100073.

• The CFLUSH.I.L1 instruction invalidates all lines in the L1 instruction cache.

• This instruction is meant for side-channel-prevention purposes, not for maintaining instruc-

tion coherence.

6.2 CEASE

• Privileged instruction only available in M-mode.

• Opcode 0x30500073.

• After retiring CEASE, hart will not retire another instruction until reset.

• Instigates power-down sequence, which will eventually raise the cease_from_tile_X signal

to the outside of the Core Complex, indicating that it is safe to power down.

6.3 PAUSE

• Opcode 0x0100000F, which is a FENCE instruction with predecessor set W and null succes-

sor set. Therefore, PAUSE is a HINT instruction that executes as a no-op on all RISC-V imple-

mentations.

• This instruction may be used for more efficient idling in spin-wait loops.

• This instruction causes a stall of up to 32 cycles or until a cache eviction occurs, whichever

comes first.

76

6.4 Branch Prediction Mode CSR

This SiFive custom extension adds an M-mode CSR to control the current branch prediction

mode, bpm at CSR 0x7C0.

The S51’s branch prediction system includes a Return Address Stack (RAS), a Branch Target

Buffer (BTB), and a Branch History Table (BHT). While branch predictors are essential to

achieve high performance in pipelined processors, they can also cause undesirable timing vari-

ability for hard real-time systems. The bpm register provides a means to customize the branch

predictor behavior to trade average performance for a more predictable execution time.

The bpm CSR has a single, one bit field defined: Branch-Direction Prediction (bdp).

6.4.1 Branch-Direction Prediction

The WARL bdp field determines the value returned by the BHT component of the branch predic-

tion system. A non-zero value indicates dynamic direction prediction and a zero value indicates

static-taken direction prediction. The BTB is cleared on any write to the bdp field and the RAS is

unaffected by writes to the bdp field.

When bdp is set to static-taken direction prediction mode, the BHT is not updated, but the BTB

continues to be updated. As any write to bdp clears the BTB, and the BTB is only updated

based on BHT predictions, the BTB will only predict taken when the BHT would also predict

taken. Keeping the BTB active improves performance and reduces energy consumption.

6.5 SiFive Feature Disable CSR

The SiFive custom M-mode Feature Disable CSR is provided to enable or disable certain

microarchitectural features. In the S51, CSR 0x7C1 has been allocated for this purpose. These

features are described in Table 20.

Warning

The features that can be controlled by this CSR are subject to change or removal in future

releases. It is not advised to depend on this CSR for development.

A feature is fully enabled when the associated bit is zero.

On reset, the Feature Disable CSR is set to 1, disabling all features. The bootloader is responsi-

ble for turning on all required features, and can simply write zero to turn on the maximal set of

features.

SiFive’s Freedom Metal bootloader handles turning on these features; when using a custom

bootloader, clearing the Feature Disable CSR must be implemented.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 77

If a particular core does not support the disabling of a feature, the corresponding bit is hardwired

to zero.

Note that arbitrary toggling of the Feature Disable CSR bits is neither recommended nor sup-

ported; they are only intended to be set from 1 to 0.

A particular Feature Disable CSR bit is only to be used in a very limited number of situations, as

detailed in the Example Usage entry in Table 21.

Feature Disable CSR

CSR 0x7C1

Bit Description

0 Disable data cache clock gating

1 Disable instruction cache clock gating

2 Disable pipeline clock gating

3 Disable speculative instruction cache refill

[8:4] Reserved

9 Suppress corrupt signal on GrantData messages

[16:10] Reserved

17 Disable instruction cache next-line prefetcher

[63:18] Reserved

Table 20: SiFive Feature Disable CSR

Feature Disable CSR Usage

Bit Description / Usage

3 Disable speculative instruction cache refill

Example Usage: A particular integration might require that execution from the System

Port range be disallowed. Startup code would first configure PMP to prevent execution

from the System Port range, followed by clearing bit 3 of the Feature Disable CSR. This

would enable speculative instruction cache refill accesses, without allowing those to

access the System Port range because PMP would prohibit such accesses.

9 Suppress corrupt signal on GrantData messages

Example Usage 1: When running in debug mode on configurations having both ECC

and a BEU, setting bit 9 of the Feature Disable CSR will suppress debug mode errors.

Example Usage 2: Startup code could scrub errors present in RAMs at power-on, fol-

lowed by clearing bit 9 of the Feature Disable CSR to allow normal operation.

Table 21: SiFive Feature Disable CSR Usage

6.6 Other Custom Instructions

Other custom instructions may be implemented, but their functionality is not documented further

here and they should not be used in this version of the S51.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 78

Chapter 7

Interrupts and Exceptions

This chapter describes how interrupt and exception concepts in the RISC‑V architecture apply

to the S51.

7.1 Interrupt Concepts

Interrupts are asynchronous events that cause program execution to change to a specific loca-

tion in the software application to handle the interrupting event. When processing of the interrupt

is complete, program execution resumes back to the original program execution location. For

example, a timer that triggers every 10 milliseconds will cause the CPU to branch to the inter-

rupt handler, acknowledge the interrupt, and set the next 10 millisecond interval.

The S51 supports machine mode interrupts.

The Core Complex also has support for the following types of RISC‑V interrupts: local and

global. Local interrupts are signaled directly to an individual hart with a dedicated interrupt

exception code and fixed priority. This allows for reduced interrupt latency as no arbitration is

required to determine which hart will service a given request and no additional memory

accesses are required to determine the cause of the interrupt. Software and timer interrupts are

local interrupts generated by the Core-Local Interruptor (CLINT).

Global interrupts are routed through a Platform-Level Interrupt Controller (PLIC), which can

direct interrupts to any hart in the system via the external interrupt. Decoupling global interrupts

from the hart allows the design of the PLIC to be tailored to the platform, permitting a broad

range of attributes like the number of interrupts and the prioritization and routing schemes.

Chapter 8 describes the CLINT. Chapter 9 describes the global interrupt architecture and the

PLIC design.

79

7.2 Exception Concepts

Exceptions are different from interrupts in that they typically occur synchronously to the instruc-

tion execution flow, and most often are the result of an unexpected event that results in the pro-

gram to enter an exception handler. For example, if a hart is operating in supervisor mode and

attempts to access a machine mode only Control and Status Register (CSR), it will immediately

enter the exception handler and determine the next course of action. The exception code in the

mstatus register will hold a value of 0x2, showing that an illegal instruction exception occurred.

Based on the requirements of the system, the supervisor mode application may report an error

and/or terminate the program entirely.

There are no specific enable bits to allow exceptions to occur since they are always enabled by

default. However, early in the boot flow, software should set up mtvec.BASE to a defined value,

which contains the base address of the default exception handler. All exceptions will trap to

mtvec.BASE. Software must read the mcause CSR to determine the source of the exception,

and take appropriate action.

Synchronous exceptions that occur from within an interrupt handler will immediately cause pro-

gram execution to abort the interrupt handler and enter the exception handler. Exceptions within

an interrupt handler are usually the result of a software bug and should generally be avoided

since mepc and mcause CSRs will be overwritten from the values captured in the original inter-

rupt context.

The RISC‑V defined synchronous exceptions have a priority order which may need to be con-

sidered when multiple exceptions occur simultaneously from a single instruction. Table 22

describes the synchronous exception priority order.

Priority
Interrupt Exception

Code
Description

Highest 3 Instruction Address Breakpoint

12 Instruction page fault

1 Instruction access fault

2 Illegal instruction

0 Instruction address misaligned

8, 9, 11 Environment call

3 Environment break

3 Load/Store/AMO address breakpoint

6 Store/AMO address misaligned

4 Load address misaligned

15 Store/AMO page fault

13 Load page fault

Lowest
7 Store/AMO access fault

5 Load access fault

Table 22: Exception Priority

Refer to Table 29 for the full table of interrupt exception codes.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 80

Data address breakpoints (watchpoints), Instruction address breakpoints, and environment

break exceptions (EBREAK) all have the same Exception code (3), but different priority, as shown

in the table above.

Instruction address misaligned exceptions (0x0) have lower priority than other instruction

address exceptions because they are the result of control-flow instructions with misaligned tar-

gets, rather than from instruction fetch.

7.3 Trap Concepts

The term trap describes the transfer of control in a software application, where trap handling

typically executes in a more privileged environment. For example, a particular hart contains

three privilege modes: machine, supervisor, and user. Each privilege mode has its own software

execution environment including a dedicated stack area. Additionally, each privilege mode con-

tains separate control and status registers (CSRs) for trap handling. While operating in User

mode, a context switch is required to handle an event in Supervisor mode. The software sets up

the system for a context switch, and then an ECALL instruction is executed which synchro-

nously switches control to the Environment call-from-User mode exception handler.

The default mode out of reset is Machine mode. Software begins execution at the highest privi-

lege level, which allows all CSRs and system resources to be initialized before any privilege

level changes. The steps below describe the required steps necessary to change privilege

mode from machine to user mode, on a particular design that also includes supervisor mode.

1. Interrupts should first be disabled globally by writing mstatus.MIE to 0, which is the

default reset value.

2. Write mtvec CSR with the base address of the Machine mode exception handler.

This is a required step in any boot flow.

3. Write mstatus.MPP to 0 to set the previous mode to User which allows us to return

to that mode.

4. Setup the Physical Memory Protection (PMP) regions to grant the required regions

to user and supervisor mode, and optionally, revoke permissions from machine

mode.

5. Write stvec CSR with the base address of the supervisor mode exception handler.

6. Write medeleg register to delegate exceptions to supervisor mode. Consider ECALL

and page fault exceptions.

7. Write mstatus.FS to enable floating point (if supported).

8. Store machine mode user registers to stack or to an application specific frame

pointer.

9. Write mepc with the entry point of user mode software

10. Execute mret instruction to enter user Mode.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 81

Note

There is only one set of user registers (x1 - x31) that are used across all privilege levels, so

application software is responsible for saving and restoring state when entering and exiting

different levels.

7.4 Interrupt Block Diagram

The S51 interrupt architecture is depicted in Figure 51.

Figure 51: S51 Interrupt Architecture Block Diagram

7.5 Local Interrupts

Software interrupts (Interrupt ID #3) are triggered by writing the memory-mapped interrupt pend-

ing register msip for a particular hart. The msip register is described in Table 27.

Timer interrupts (Interrupt ID #7) are triggered when the memory-mapped register mtime is

greater than or equal to the global timebase register mtimecmp, and both registers are part of

the CLINT memory map. The mtime and mtimecmp registers are generally only available in

machine mode, unless the PMP grants user mode access to the memory-mapped region in

which they reside.

Global interrupts are usually first routed to the PLIC, then into the hart using external interrupts

(Interrupt ID #11).

Local external interrupts (Interrupt ID #16–32) may connect directly to an interrupt source, and

do not need to be routed through the PLIC. The S51 has 16 local external interrupts.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 82

7.6 Interrupt Operation

If the global interrupt-enable mstatus.MIE is clear, then no interrupts will be taken. If

mstatus.MIE is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-

rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect

the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is

cleared.

7.6.1 Interrupt Entry and Exit

When an interrupt occurs:

• The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

• The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 25.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

When an mret instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

• The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

• The pc is set to the value of mepc.

At this point, control is handed over to software.

At the software level, interrupt attributes can be applied to interrupt processing functions, as

described in Section 8.4.

The Control and Status Registers (CSRs) involved in handling RISC‑V interrupts are described

in Section 7.7.

7.7 Interrupt Control and Status Registers

The S51 specific implementation of interrupt CSRs is described below. For a complete descrip-

tion of RISC‑V interrupt behavior and how to access CSRs, please consult The RISC‑V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Version 1.10.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 83

7.7.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the S51 is provided in Table 23. Note that this is not a complete description of mstatus as it

contains fields unrelated to interrupts. For the full description of mstatus, please consult The

RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MIE RW Machine Interrupt Enable

[6:4] Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

[10:8] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Table 23: S51 mstatus Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus. Prior to writing mstatus.MIE=1, it is

recommended to first enable interrupts in mie.

7.7.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and

setting the mode by which the S51 will process interrupts. For Direct and Vectored modes, the

interrupt processing mode is defined in the MODE field of the mtvec register. The mtvec register

is described in Table 24, and the mtvec.MODE field is described in Table 25.

Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the S51 supported modes

is described in Table 25.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address.

Operating in Direct Mode requires 4-byte

alignment.

Operating in Vectored Mode requires

256-byte alignment.

Table 24: mtvec Register

Copyright © 2017–2020, SiFive Inc. All rights reserved. 84

MODE Field Encoding mtvec.MODE

Value Mode Description

0x0 Direct All asynchronous interrupts and synchronous

exceptions set pc to BASE.

0x1 Vectored Exceptions set pc to BASE, interrupts set pc to BASE

+ 4 × mcause.EXCCODE.

≥ 2 Reserved

Table 25: Encoding of mtvec.MODE

Mode Direct

When operating in direct mode, all interrupts and exceptions trap to the mtvec.BASE address.

Inside the trap handler, software must read the mcause register to determine what triggered the

trap. The mcause register is described in Table 28.

When operating in Direct Mode, BASE must be 4-byte aligned.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 × exception code

(mcause.EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to

mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to trans-

fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 256-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code 11. Thus, when

interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global inter-

rupt.

7.7.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 26.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 85

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

[6:4] Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

[10:8] Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[15:12] Reserved WPRI

16 LIE0 RW Local Interrupt 0 Enable

17 LIE1 RW Local Interrupt 1 Enable

18 LIE2 RW Local Interrupt 2 Enable

…

31 LIE15 RW Local Interrupt 15 Enable

[63:32] Reserved WPRI

Table 26: mie Register

7.7.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 27.

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

[2:0] Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

[6:4] Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

[10:8] Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[15:12] Reserved WIRI

16 LIP0 RO Local Interrupt 0 Pending

17 LIP1 RO Local Interrupt 1 Pending

18 LIP2 RO Local Interrupt 2 Pending

…

31 LIP15 RO Local Interrupt 15 Pending

[63:32] Reserved WIRI

Table 27: mip Register

Copyright © 2017–2020, SiFive Inc. All rights reserved. 86

7.7.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous

exceptions, in which case the most-significant bit of mcause is set to 0.

See Table 28 for more details about the mcause register. Refer to Table 29 for a list of synchro-

nous exception codes.

Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[9:0] Exception Code WLRL A code identifying the last exception.

[62:10] Reserved WLRL

63 Interrupt WARL 1, if the trap was caused by an interrupt; 0

otherwise.

Table 28: mcause Register

Copyright © 2017–2020, SiFive Inc. All rights reserved. 87

Interrupt Exception Codes

Interrupt Exception Code Description

1 0–2 Reserved

1 3 Machine software interrupt

1 4–6 Reserved

1 7 Machine timer interrupt

1 8–10 Reserved

1 11 Machine external interrupt

1 12–15 Reserved

1 16 Local Interrupt 0

1 17 Local Interrupt 1

1 18–30 …

1 31 Local Interrupt 15

1 ≥ 32 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9–10 Reserved

0 11 Environment call from M-mode

0 ≥ 12 Reserved

Table 29: mcause Exception Codes

7.7.6 Minimum Interrupt Configuration

The minimum configuration needed to configure an interrupt is shown below.

• Write mtvec to configure the interrupt mode and the base address for the interrupt vector

table.

• Enable interrupts in memory mapped PLIC register space. The CLINT does not contain

interrupt enable bits.

• Write mie CSR to enable the software, timer, and external interrupt enables for each privi-

lege mode.

• Write mstatus to enable interrupts globally for each supported privilege mode.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 88

7.8 Interrupt Priorities

Local interrupts have higher priority than global interrupts, which arrive through the machine

external interrupt. As such, if a local and a global interrupt arrive at a hart on the same cycle, the

local interrupt will be taken if it is enabled.

Priorities of local interrupts are determined by the local interrupt ID, with Local Interrupt 15 being

highest priority. For example, if both Local Interrupt 15 and Local Interrupt 14 arrive in the same

cycle, Local Interrupt 15 will be taken.

Local Interrupt 15 is the highest-priority interrupt in the S51. Given that Local Interrupt 15’s

exception code is also the greatest, it occupies the last slot in the interrupt vector table. This

unique position in the vector table allows for Local Interrupt 15’s trap handler to be placed in-

line, without the need for a jump instruction as with other interrupts when operating in vectored

mode. Hence, Local Interrupt 15 should be used for the most latency-sensitive interrupt in the

system for a given hart. Individual priorities of global interrupts are determined by the PLIC, as

discussed in Chapter 9.

S51 interrupts are prioritized as follows, in decreasing order of priority:

• Local Interrupt 15

• …

• Local Interrupt 0

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

7.9 Interrupt Latency

Interrupt latency for the S51 is four core_clock_0 cycles, as counted by the number of cycles it

takes from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of three clock cycles, where

the PLIC is clocked by clock. This means that the total latency, in cycles, for a global interrupt

is: 4 + 3 × (core_clock_0 Hz ÷ clock Hz). This is a best case cycle count and assumes the

handler is cached or located in ITIM. It does not take into account additional latency from a

peripheral source.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 89

Chapter 8

Core-Local Interruptor (CLINT)

This chapter describes the operation of the Core-Local Interruptor (CLINT). The S51 CLINT

complies with The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version

1.10.

Figure 52: CLINT Block Diagram

The CLINT has a small footprint and provides software, timer, and external interrupts directly to

the hart.

In addition, there are 16 local external interrupts that can be used for peripherals that require

low-latency handling. The CLINT block also holds memory-mapped control and status registers

associated with software and timer interrupts.

90

8.1 CLINT Priorities and Preemption

The CLINT has a fixed priority scheme based on interrupt ID, and nested interrupts (preemp-

tion) within a given privilege level is not supported. Higher privilege levels may preempt lower

privilege levels, however. The CLINT offers two modes of operation, Direct mode and Vectored

mode.

In Direct mode, all interrupts and exceptions trap to mtvec.BASE. In Vectored mode, exceptions

trap to mtvec.BASE, but interrupts will jump directly to their vector table index. See Section 7.7.2

for more information about mtvec.BASE.

8.2 CLINT Vector Table

Figure 53: CLINT Interrupts and Vector Table

The CLINT vector table is populated with jump instructions, since hardware jumps to the index

in the vector table first, then subsequently jumps to the handler. All exception types trap to the

first entry in the table, which is mtvec.BASE.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 91

An example CLINT vector table is shown below.

Figure 54: CLINT Vector Table Example

Copyright © 2017–2020, SiFive Inc. All rights reserved. 92

8.3 CLINT Interrupt Sources

The S51 has 16 interrupt sources that can be connected to peripheral devices, in addition to the

standard RISC‑V software, timer, and external interrupts. These interrupt inputs are exposed at

the top-level via the local_interrupts signals. Any unused local_interrupts inputs should

be tied to logic 0. These signals are positive-level triggered.

See the S51 User Manual for a description of this interrupt signal.

CLINT Interrupt IDs are provided in Table 30.

S51 Interrupt IDs

ID Interrupt Notes

0–2 Reserved

3 msip Machine Software Interrupt

4–6 Reserved

7 mtip Machine Timer Interrupt

8–10 Reserved

11 meip Machine External Interrupt

12–15 Reserved

16 lint0 Local Interrupt 0

17 lint1 Local Interrupt 1

… lintX Local Interrupt X

32 lint15 Local Interrupt 15

Table 30: S51 Interrupt IDs

8.4 CLINT Interrupt Attribute

To help with efficiency of save and restore context, interrupt attributes can be applied to func-

tions used for interrupt handling.

void __attribute__((interrupt))

software_handler (void) {

// handler code

}

Copyright © 2017–2020, SiFive Inc. All rights reserved. 93

Figure 55: CLINT Interrupt Attribute Example

This attribute will save and restore and registers that are used within the handler, and insert an

mret instruction at the end of the handler.

8.5 CLINT Memory Map

Table 31 shows the memory map for CLINT on the S51. Note that there are no enable bits for

specific interrupts within the CLINT memory map, as the enables for these interrupts reside in

the mie CSR for each interrupt, and the mstatus.mie CSR bit, which enables all machine inter-

rupts globally. See Section 7.7.3 for a description of the interrupt enable bits in the mie CSR,

and Section 7.7.4 for a description of the interrupt pending bits in the mip CSR.

Address Width Attr. Description Notes

0x0200_0000 4B RW msip for hart 0 MSIP Register (1-bit wide)

0x0200_0004 Reserved

…

0x0200_3FFF

0x0200_4000 8B RW mtimecmp for hart 0 MTIMECMP Register

0x0200_4008 Reserved

…

0x0200_BFF7

0x0200_BFF8 8B RW mtime Timer Register

0x0200_C000 Reserved

Table 31: CLINT Register Map

8.6 Register Descriptions

This section describes the functionality of the memory-mapped registers in the CLINT.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 94

8.6.1 MSIP Registers

Machine mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. The msip register is a 32-bit wide WARL register, where the upper 31 bits are tied to

0. The least-significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

isters are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as

harts may write each other’s msip bits to effect interprocessor interrupts.

8.6.2 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the

rtc_toggle signal, which is described in the S51 User Guide. A timer interrupt is pending

whenever mtime is greater than or equal to the value in the mtimecmp register. The timer inter-

rupt is reflected in the mtip bit of the mip register, described in Chapter 7.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 95

Chapter 9

Platform-Level Interrupt Controller

(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the S51.

The PLIC complies with The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture,

Version 1.10 and can support a maximum of 127 external interrupt sources with 7 priority levels.

The S51 PLIC resides in the clock timing domain, allowing for relaxed timing requirements. The

latency of global interrupts, as perceived by a hart, increases with the ratio of the core_clock_0

frequency and the clock frequency.

9.1 Memory Map

The memory map for the S51 PLIC control registers is shown in Table 32. The PLIC memory

map only supports aligned 32-bit memory accesses.

96

PLIC Register Map

Address Width Attr. Description Notes

0x0C00_0000 Reserved

0x0C00_0004 4B RW source 1 priority
See Section 9.3 for more

information
…

0x0C00_01FC 4B RW source 127 priority

0x0C00_0200 Reserved

…

0x0C00_1000 4B RO Start of pending array
See Section 9.4 for more

information
…

0x0C00_100C 4B RO Last word of pending array

0x0C00_1010 Reserved

…

0x0C00_2000 4B RW Start Hart 0 M-Mode interrupt

enables
See Section 9.5 for more

information
…

0x0C00_200C 4B RW End Hart 0 M-Mode interrupt

enables

0x0C00_2010 Reserved

…

0x0C20_0000 4B RW Hart 0 M-Mode priority

threshold

See Section 9.6 for more

information

0x0C20_0004 4B RW Hart 0 M-Mode claim/com-

plete

See Section 9.7 for more

information

0x0C20_0008 Reserved

…

0x1000_0000 End of PLIC Memory Map

Table 32: PLIC Register Map

9.2 Interrupt Sources

The S51 has 127 interrupt sources. These are external global interrupts. These signals are posi-

tive-level triggered and are not configurable.

In the PLIC, as specified in The RISC‑V Instruction Set Manual, Volume II: Privileged Architec-

ture, Version 1.10, Global Interrupt ID 0 is defined to mean "no interrupt," hence

global_interrupts[0] corresponds to PLIC Interrupt ID 1. Thus, the first usable PLIC inter-

rupt has ID value of 2.

See the S51 User Guide for a description of global interrupts.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 97

9.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

priority register. The S51 supports 7 levels of priority. A priority value of 0 is reserved to mean

"never interrupt" and effectively disables the interrupt. Priority 1 is the lowest active priority, and

priority 7 is the highest. Ties between global interrupts of the same priority are broken by the

Interrupt ID; interrupts with the lowest ID have the highest effective priority. See Table 33 for the

detailed register description.

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 × Interrupt ID

Bits Field Name Attr. Rst. Description

[2:0] Priority RW X Global interrupt priority.

[31:3] Reserved RO 0

Table 33: PLIC Interrupt Priority Register

9.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 4 words of 32 bits. The pending bit for interrupt ID is stored in bit

of word . As such, the S51 has 4 interrupt pending registers. Bit 0 of word

0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-

ing a claim as described in Section 9.7.

PLIC Interrupt Pending Register 1 (pending1)

Base Address 0x0C00_1000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Pend-

ing

RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Pend-

ing

RO 0 Pending bit for global interrupt 1

2 Interrupt 2 Pend-

ing

RO 0 Pending bit for global interrupt 2

…

31 Interrupt 31 Pend-

ing

RO 0 Pending bit for global interrupt 31

Table 34: PLIC Interrupt Pending Register 1

Copyright © 2017–2020, SiFive Inc. All rights reserved. 98

PLIC Interrupt Pending Register 4 (pending4)

Base Address 0x0C00_100C

Bits Field Name Attr. Rst. Description

0 Interrupt 96 Pend-

ing

RO 0 Pending bit for global interrupt 96

…

31 Interrupt 127

Pending

RO 0 Pending bit for global interrupt 127

Table 35: PLIC Interrupt Pending Register 4

9.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enable registers.

The enable registers are accessed as a contiguous array of 4 × 32-bit words, packed the same

way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0 and is

hardwired to 0.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.

PLIC Interrupt Enable Register 1 (enable1) for Hart 0 M-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Enable RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

…

31 Interrupt 31

Enable

RW X Enable bit for global interrupt 31

Table 36: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 4 (enable4) for Hart 0 M-Mode

Base Address 0x0C00_200C

Bits Field Name Attr. Rst. Description

0 Interrupt 96

Enable

RW X Enable bit for global interrupt 96

…

31 Interrupt 127

Enable

RW X Enable bit for global interrupt 127

Table 37: PLIC Interrupt Enable Register 4 for Hart 0 M-Mode

Copyright © 2017–2020, SiFive Inc. All rights reserved. 99

9.6 Priority Thresholds

The S51 supports setting of an interrupt priority threshold via the threshold register. The

threshold is a WARL field, where the S51 supports a maximum threshold of 7.

The S51 masks all PLIC interrupts of a priority less than or equal to threshold. For example, a

threshold value of zero permits all interrupts with non-zero priority, whereas a value of 7

masks all interrupts. If the threshold register contains a value of 5, all PLIC interrupt configured

with priorities from 1 through 5 will not be allowed to propagate to the CPU.

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0x0C20_0000

Bits Field Name Attr. Rst. Description

[2:0] Threshold RW X Sets the priority threshold

[31:3] Reserved RO 0

Table 38: PLIC Interrupt Threshold Register

9.7 Interrupt Claim Process

A S51 hart can perform an interrupt claim by reading the claim/complete register (Table 39),

which returns the ID of the highest-priority pending interrupt or zero if there is no pending inter-

rupt. A successful claim also atomically clears the corresponding pending bit on the interrupt

source.

A S51 hart can perform a claim at any time, even if the MEIP bit in its mip (Table 27) register is

not set.

The claim operation is not affected by the setting of the priority threshold register.

9.8 Interrupt Completion

A S51 hart signals it has completed executing an interrupt handler by writing the interrupt ID it

received from the claim to the claim/complete register (Table 39). The PLIC does not check

whether the completion ID is the same as the last claim ID for that target. If the completion ID

does not match an interrupt source that is currently enabled for the target, the completion is

silently ignored.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 100

PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0004

Bits Field Name Attr. Rst. Description

[31:0] Interrupt Claim/

Complete for Hart

0 M-Mode

RW X A read of zero indicates that no inter-

rupts are pending. A non-zero read

contains the id of the highest pending

interrupt. A write to this register signals

completion of the interrupt id written.

Table 39: PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode

The PLIC cannot forward a new interrupt to a hart that has claimed an interrupt, but has not yet

finished the complete step of the interrupt handler. Thus, the PLIC does not support preemption

of global interrupts to an individual hart.

Interrupt IDs for global interrupts routed through the PLIC are independent of the interrupt IDs

for local interrupts. The PLIC handler may check for additional pending global interrupts once

the initial claim/complete process has finished, prior to exiting the handler. This method could

save additional PLIC save/restore context for global interrupts.

9.9 Example PLIC Interrupt Handler

Since the PLIC interfaces with the CPU through external interrupt #11, the external handler

must contain an additional claim/complete step that is used to handshake with the PLIC logic.

void external_handler() {

//get the highest priority pending PLIC interrupt

uint32_t int_num = plic.claim_comlete;

//branch to handler

plic_handler[int_num]();

//complete interrupt by writing interrupt number back to PLIC

plic.claim_complete = int_num;

// Add additional checks for PLIC pending here, if desired

}

If a CPU reads claim/complete and it returns 0x0, the interrupt does not require processing, and

thus writeback of the claim/complete is not necessary.

The plic_handler[]() routine shown above demonstrates one method to implement a soft-

ware table where the offset of the function that resides within the table is determined by the

PLIC interrupt ID. The PLIC interrupt ID is unique to the PLIC, in that it is completely indepen-

dent of the interrupt IDs of local interrupts.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 101

Chapter 10

TileLink Error Device

The Error Device is a TileLink slave that responds to all requests with a TileLink denied error

and all reads with a corrupt error. It has no registers. The entire memory range discards writes

and returns zeros on read. Both operation acknolwedgements carry an error indication.

The Error Device serves a dual role. Internally, it is used as a landing pad for illegal off-chip

requests. However, it is also useful for testing software handling of bus errors.

102

Chapter 11

Power Management

The following chapter establishes flows for powering up, powering down, and resetting the hard-

ware of the S51.

11.1 Hardware Reset

The following list summarizes the hardware reset values required by the RISC‑V Privileged

Specification and applies to all SiFive designs.

1. Privilege mode is set to machine mode.

2. mstatus.MIE and mstatus.MPRV are required to be 0.

3. The misa register holds the full set of supported extensions for that implementation,

and misa.MXL defaults to the widest supported ISA available, referred to as

MXLEN.

4. The pc is set to the implementation specific reset vector.

5. The mcause register is set to a value indicating the cause of the reset.

6. The PMP configuration fields for address matching mode (A) and Lock (L) are set to

0, which defaults to no protection for any privilege level.

The internal state of the rest of the system should be completed by software early in the boot

flow.

11.2 Early Boot Flow

For the early stages of boot, some of the first things software must consider are listed below:

• The global pointer (gp or x3) user register should be initialized to the __global_pointer$

linker generated symbol and not changed at any point in the application program.

103

• The stack pointer (sp or x2) user register should be also set up as a standard part of the

boot flow.

• All other user registers (x1, x4 - x31) can be written to 0 upon initial power-on.

• The mtvec register holds the default exception handler base address, so it is important to

set up this register early in the boot flow so it points to a properly aligned, valid exception

handler location.

• Zero out the bss section, and copy data sections into RAM areas as needed.

11.3 Interrupt State During Early Boot

Since mstatus.MIE defaults to 0, all interrupts are disabled globally out of reset. Prior to

enabling interrupts globally through mstatus.MIE, consider the following:

• Ensure no timer interrupts are pending by checking the mip.MTIP bit. The mtime register is

0 out of reset, and starts running immediately. However, the mtimecmp register does not

have a reset value.

If no timer interrupt is required, leave mie.MTIE equal to 0 prior to enabling global interrupt

with mstatus.MIE.

If the application requires a timer interrupt, write mtimecmp to a value in the future for the

next timer interrupt before enabling mstatus.MIE.

• Write the remaining bits in the mie CSR to the desired value to enable interrupts based on

the requirements of the system. This register is not defined to have a reset value.

• Each msip register in the Core-Local Interruptor (CLINT) or Core-Local Interrupt Controller

(CLIC) address space is reset to 0, so no specific initialization is required for local software

interrupts.

Since msip is memory-mapped, any hart in the system may trigger a software interrupt on

another hart, so this should be considered during the boot flow on a multi-hart system.

• If a Platform-Level Interrupt Controller (PLIC) exists, check the PLIC pending status. The

PLIC memory mapped pending bits are read-only, so the pending status should be cleared

at the source if they reset to a non-zero status. Then, enable the PLIC interrupts as required

by the system prior to enabling interrupts in the system via mstatus.MIE.

11.4 Other Boot Time Considerations

• Ensure the remaining bits in the mstatus CSR are written to the desired application specific

configuration at boot time.

• If a design includes user and supervisor privilege levels, initialize medeleg and mideleg reg-

isters to 0 until supervisor-level trap handling is set up correctly using stvec.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 104

• The mcause, mepc, and mtval registers hold important information in the event of a synchro-

nous exception. If the synchronous exception handler forces reset in the application, the

contents of these registers can be checked to understand root cause.

• The PMP address and configuration CSRs are required to be initialized if user or supervisor

privilege levels are part of the design. By default, user and supervisor modes have no per-

missions to the memory map unless explicitly granted by the PMP.

• The mcycle CSR is a 64-bit counter on both RV32 and RV64 systems, and it counts the

number of cycles executed by the hart. It has an arbitrary value after reset and can be writ-

ten as needed by the application.

• Instructions retired can be counted by the minstret register, and this also has an arbitrary

value after reset. This can be written to any given value.

• The mhpmeventX CSR selects which hardware events to count, where the count is reflected

in mhpmcounterX. At any point, the mhpmcounterX registers can be directly written to reset

their value when the mhpmeventX register has the proper event selected.

• There is no requirement for boot time initialization to any of the registers within the Debug

Module, unless there is an application specific reason to do so.

• All other CSRs during boot time initialization should be considered based on system and

application requirements.

11.5 Power-Down Flow

Designate one core as master and all others as slaves. For our Core IP product, coordination

with an External Agent is required.

1. External Agent: Wait for communication from master core to initiate the following

steps:

a. Stop sending inbound traffic (both transactions and interrupts) into the

core complex.

b. Wait until all outstanding requests to the Core Complex are completed,

then

c. Wait until cease_from_tile_X is high for the master core and all slave

cores.

d. Once cease_from_tile_X is high for master core and all slave cores,

apply reset to the whole core complex.

2. Master core:

a. The following sequence should be executed in machine mode and NOT

out of a remote ITIM/DTIM.

b. Communicate with external agent to initiate cease power-down

sequence.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 105

c. Poll external agent until steps 1.a and 1.b are completed.

d. Disable all interrupts except those related to bus errors/memory corrup-

tion, and IPIs (if using enabled IPI to coordinate power-down sequence

among cores).

i. Copy contents of any TIMs/LIMs into external memory.

ii. Master core: if there is an L2 cache, flush it (all addresses at

which cacheable physical memory exists).

iii. If there is no L2 cache, but there is a data cache, flush it

using full-cache variant of CFLUSH.D.L1, if available; or per-

line variant if not

e. Disable all interrupts.

f. Execute CEASE instruction.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 106

Chapter 12

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints

are supported.

12.1 Debug CSRs

This section describes the per hart Trace and Debug Registers (TDRs), which are mapped into

the CSR space as follows:

CSR Name Description Allowed Access Modes

tselect Trace and debug register select Debug, Machine

tdata1 First field of selected TDR Debug, Machine

tdata2 Second field of selected TDR Debug, Machine

tdata3 Third field of selected TDR Debug, Machine

dcsr Debug control and status register Debug

dpc Debug PC Debug

dscratch Debug scratch register Debug

Table 40: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.

12.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:

107

Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

Table 41: tselect CSR

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

12.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are 64-bit read/write registers selected from a larger underlying bank of

TDR registers by the tselect register.

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 42: tdata1 CSR

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

Table 43: tdata2/3 CSRs

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥3 Reserved

Table 44: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any

Copyright © 2017–2020, SiFive Inc. All rights reserved. 108

attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

12.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification, Version 0.13.

12.1.4 Debug PC (dpc)

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

12.1.5 Debug Scratch (dscratch)

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation, Version 0.13.

12.2 Breakpoints

The S51 supports four hardware breakpoint registers per hart, which can be flexibly shared

between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

Table 45: TDR CSRs when used as Breakpoints

12.2.1 Breakpoint Match Control Register (mcontrol)

Each breakpoint control register is a read/write register laid out in Table 46.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 109

Breakpoint Control Register

CSR mcontrol

Bits Field Name Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on user mode

4 S WARL X Address match on supervisor mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on machine mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[15:12] action WARL 0 Breakpoint action to take.

[17:16] sizelo WARL 0 Size of the breakpoint. Always 0.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

Table 46: Test and Debug Data Register 3

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the

address match is successful. The value 0 generates a breakpoint exception. The value 1 enters

debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads, stores, and instruction fetches, respectively. All combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine, supervisor, and user modes, respectively. All combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered

Copyright © 2017–2020, SiFive Inc. All rights reserved. 110

breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

Table 47: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

12.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is a 64-bit read/write register used to hold significant

address bits for address matching and also the unary-encoded address masking information for

NAPOT ranges.

12.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 111

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.

12.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

12.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

12.3.1 Debug RAM and Program Buffer (0x300–0x3FF)

The S51 has 16 32-bit words of program buffer for the debugger to direct a hart to execute arbi-

trary RISC-V code. Its location in memory can be determined by executing aiupc instructions

and storing the result into the program buffer.

The S51 has two 32-bit words of debug data RAM. Its location can be determined by reading

the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM space is

used to pass data for the Access Register abstract command described in the RISC-V Debug

Specification. The S51 supports only general-purpose register access when harts are halted. All

other commands must be implemented by executing from the debug program buffer.

In the S51, both the program buffer and debug data RAM are general-purpose RAM and are

mapped contiguously in the Core Complex memory space. Therefore, additional data can be

passed in the program buffer, and additional instructions can be stored in the debug data RAM.

Debuggers must not execute program buffer programs that access any debug module memory

except defined program buffer and debug data addresses.

The S51 does not implement the DMSTATUS.anyhavereset or DMSTATUS.allhavereset bits.

12.3.2 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 112

12.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)

The flag registers in the debug module are used for the debug module to communicate with

each hart. These flags are set and read used by the debug ROM and should not be accessed

by any program buffer code. The specific behavior of the flags is not further documented here.

12.3.4 Safe Zero Address

In the S51, the debug module contains the addresses 0x0 through 0xFFF in the memory map.

Memory accesses to these addresses raise access exceptions, unless the hart is in debug

mode. This property allows a "safe" location for unprogrammed parts, as the default mtvec loca-

tion is 0x0.

12.4 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC‑V Debug Specification, Version 0.13. A

debug probe or agent connects to the Debug Module through the Debug Module Interface

(DMI). The following sections describe notable spec options used in the implementation and

should be read in conjunction with the RISC‑V Debug Specification.

12.4.1 DM Registers

dmstatus register

dmstatus holds the DM version number and other implementation information. Most impor-

tantly, it contains status bits that indicate the current state of the selected hart(s).

dmcontrol register

A debugger performs most hart control through the dmcontrol register.

Control Function

dmactive This bit enables the DM and is reflected in the dmactive output signal.

When dmactive=0, the clock to the DM is gated off.

ndmreset This is a read/write bit that drives the ndreset output signal.

resethaltreq When set, the DM will halt the hart when it emerges from reset.

hartreset Not Supported

hartsel This field selects the hart to operate on

hasel Not Supported

Table 48: Debug Control Register

Copyright © 2017–2020, SiFive Inc. All rights reserved. 113

12.4.2 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state. Many

aspects of Abstract Commands are optional in the RISC‑V Debug Spec and are implemented

as described below.

cmdtype Feature Support

Access

Register

GPR registers Access Register command, register number 0x1000 -

0x101F

CSR registers Not supported. CSRs are accessed using the Program

Buffer.

FPU registers Not supported. FPU registers are accessed using the Pro-

gram Buffer.

Autoexec Both autoexecprogbuf and autoexecdata are sup-

ported.

Post-increment Not supported.

Core Register

Access

Not supported.

Quick

Access

Not supported.

Access

Memory

Not supported. Memory access is accomplished using the

Program Buffer.

Table 49: Debug Abstract Commands

12.4.3 System Bus Access

System Bus Access (SBA) provides an alternative method to access memory. SBA operation

conforms to the RISC-V Debug Spec and the description is not duplicated here. Comparing Pro-

gram Buffer memory access and SBA:

Program Buffer Memory Access SBA Memory Access

Virtual address Physical Address

Subject to Physical Memory Protection (PMP) Not subject to PMP

Cache coherent Cache coherent

Hart must be halted Hart may be halted or running

Table 50: System Bus vs. Program Buffer Comparison

Copyright © 2017–2020, SiFive Inc. All rights reserved. 114

Chapter 13

Appendix

13.1 Appendix A

This section lists the key configuration options of the SiFive S5 Series core. The configuration

for the S51 is listed in docs/core_complex_configuration.txt.

13.1.1 S5 Series

The S5 Series comes with the following set of configuration options:

Modes and ISA

• Configurable number of Cores (1 to 8). In the case where more than one core is

selected, all cores are configured the same.

• Optional support for RISC‑V user mode

• Optional M, A, F, and D extensions

• Configurable Multiplication performance (1-cycle or 4-cycle)

• Optional SiFive Custom Instruction Extension (SCIE)

On-Chip Memory

• Configurable Instruction Cache size (4 KiB to 64 KiB) and associativity (2-, 4-, or 8-way)

• Optional Data Tightly Integrated Memory (DTIM) or Data Cache:

◦ If DTIM, then configurable size (4 KiB to 256 KiB) and base address

◦ If Data Cache, then configurable size (4 KiB to 256 KiB) and associativity (2-, 4-, 8-,

or 16-way)

• Optional L2 Cache with configurable L2 size (128 KiB to 4 MiB), associativity (2-, 4-, 8-,

16-, or 32-way), and banks (1, 2, or 4)

Ports

• Optional Memory Port, System Port, Peripheral Port, and Front Port

115

◦ Each port has a configurable base address, size, and protocol (AHB, AHB-Lite,

APB, AXI4)

Security

• Number of Physical Memory Protection registers (2 to 16)

Debug

• Configurable debug interface (JTAG, cJTAG, APB)

• Number of Hardware Breakpoints (0 to 16) and External Triggers (0 to 16)

• System Bus Access enabled

• Configurable number of performance counters (0 to 8)

• Optional Raw Instruction Trace Port

• Optional Nexus Trace Encoder with the following options:

◦ Trace Sink (SRAM, ATB Bridge, SWT)

◦ Optional Timestamp capabilities with configurable width and source

◦ External Trigger Inputs (0 to 8) and Outputs (0 to 8)

◦ Trace Buffer size (256 KB to 64 KB)

◦ Optional Instrumented Trace

Interrupts

• Optional Platform-Level Interrupt Controller (PLIC) with the following parameters:

◦ Priority Levels (1 to 7)

◦ Number of interrupts (1 to 511)

• A configurable number of Core-Local Interruptor (CLINT) interrupts (0 to 16)

Design For Test

• Optional SRAM Macro Extraction

• Optional Clock Gate Extraction

• Optional Grouping and Wrapping of extracted macros

Power Management

• Optional Clock Gating

• Separate Reset for Core and Uncore

Branch Prediction

• Configurable number of Branch Target Buffer (BTB) entries (5 to 60)

• Configurable number of Branch History Table (BHT) entries (128 to 1024)

• Configurable number of Return Address Stack (RAS) entries (2 to 12)

Copyright © 2017–2020, SiFive Inc. All rights reserved. 116

Note that the configuration may be limited to a fixed set of discrete options.

Copyright © 2017–2020, SiFive Inc. All rights reserved. 117

Chapter 14

References

Visit the SiFive forums for support and answers to frequently asked questions:

https://forums.sifive.com

[1] A. Waterman and K. Asanovic, Eds., The RISC-V Instruction Set Manual, Volume I: User-

Level ISA, Version 2.2, June 2019. [Online]. Available: https://riscv.org/specifications/

[2] ——, The RISC-V Instruction Set Manual Volume II: Privileged Architecture Version 1.11,

June 2019. [Online]. Available: https://riscv.org/specifications/privileged-isa

[3] ——, SiFive TileLink Specification Version 1.8.0, August 2019. [Online]. Available:

https://sifive.com/documentation/tilelink/tilelink-spec

[4] A. Chang, D. Barbier, and P. Dabbelt, RISC-V Platform-Level Interrupt Controller (PLIC)

Specification. [Online]. Available: https://github.com/riscv/riscv-plic-spec

118

	SiFive S51 Manual
	SiFive S51 Manual
	Proprietary Notice
	Release Information

	Chapter 1 Introduction
	1.1 About this Document
	1.2 About this Release
	1.3 S51 Overview
	1.4 S5 RISC‑V Core
	1.5 Memory System
	1.6 Interrupts
	1.7 Debug Support
	1.8 Compliance

	Chapter 2 List of Abbreviations and Terms
	Chapter 3 S5 RISC-V Core
	3.1 Instruction Memory System
	3.1.1 Execution Memory Space
	3.1.2 L1 Instruction Cache
	3.1.3 Instruction Cache Reconfigurability
	3.1.4 Cache Maintenance
	3.1.5 Instruction Fetch Unit
	3.1.6 Branch Prediction

	3.2 Execution Pipeline
	3.2.1 Instruction Timing

	3.3 Data Memory System
	3.3.1 Data Tightly Integrated Memory (DTIM)

	3.4 Atomic Memory Operations
	3.5 Local Interrupts
	3.6 Supported Modes
	3.7 Physical Memory Protection (PMP)
	3.7.1 PMP Functional Description
	3.7.2 PMP Region Locking
	3.7.3 PMP Registers
	PMP Configuration Registers
	PMP Address Registers

	3.7.4 PMP and PMA
	3.7.5 PMP Programming Overview
	PMP Programming Example
	PMP Access Scenarios

	3.7.6 PMP and Paging
	3.7.7 PMP Limitations
	3.7.8 Behavior for Regions without PMP Protection
	3.7.9 Cache Flush Behavior on PMP Protected Region

	3.8 Hardware Performance Monitor
	3.8.1 Performance Monitoring Counters Reset Behavior
	3.8.2 Fixed-Function Performance Monitoring Counters
	Fixed-Function Cycle Counter (mcycle)
	Fixed-Function Instructions-Retired Counter (minstret)

	3.8.3 Event-Programmable Performance Monitoring Counters
	3.8.4 Event Selector Registers
	3.8.5 Event Selector Encodings
	Combining Events

	3.8.6 Counter-Enable Registers

	3.9 Ports
	3.9.1 Front Port
	3.9.2 Peripheral Port
	3.9.3 System Port

	Chapter 4 Physical Memory Attributes and Memory Map
	4.1 Physical Memory Attributes Overview
	4.2 Memory Map

	Chapter 5 Programmer’s Model
	5.1 Base Instruction Formats
	5.2 I Extension: Standard Integer Instructions
	5.2.1 R-Type (Register-Based) Integer Instructions
	5.2.2 I-Type Integer Instructions
	5.2.3 I-Type Load Instructions
	5.2.4 S-Type Store Instructions
	5.2.5 Unconditional Jumps
	5.2.6 Conditional Branches
	5.2.7 Upper-Immediate Instructions
	5.2.8 Memory Ordering Operations
	5.2.9 Environment Call and Breakpoints
	5.2.10 NOP Instruction

	5.3 M Extension: Multiplication Operations
	5.3.1 Division Operations

	5.4 A Extension: Atomic Operations
	5.4.1 Atomic Memory Operations (AMOs)

	5.5 C Extension: Compressed Instructions
	5.5.1 Compressed 16-bit Instruction Formats
	5.5.2 Stack-Pointed-Based Loads and Stores
	5.5.3 Register-Based Loads and Stores
	5.5.4 Control Transfer Instructions
	5.5.5 Integer Computational Instructions
	Integer Constant-Generation Instructions
	Integer Register-Immediate Operations
	Integer Register-Register Operations
	Defined Illegal Instruction

	5.6 Zicsr Extension: Control and Status Register Instructions
	5.6.1 Control and Status Registers
	5.6.2 Defined CSRs
	5.6.3 CSR Access Ordering
	5.6.4 SiFive RISC‑V Implementation Version Registers
	mvendorid
	marchid
	mimpid
	Reading Implementation Version Registers

	5.7 Base Counters and Timers
	5.7.1 Timer Register
	5.7.2 Timer API
	Functions

	5.8 ABI - Register File Usage and Calling Conventions
	5.8.1 RISC‑V Assembly
	5.8.2 Assembler to Machine Code
	5.8.3 Calling a Function (Calling Convention)
	Nested Functions

	5.9 Memory Ordering - FENCE Instructions
	5.10 Boot Flow
	5.11 Linker File
	5.11.1 Linker File Symbols
	Generated Linker Symbols

	5.12 RISC‑V Compiler Flags
	5.12.1 arch, abi, and mtune
	-march
	-mabi
	arch/abi Combinations

	5.13 Compilation Process
	5.14 Large Code Model Workarounds
	5.14.1 Workaround Example #1
	5.14.2 Workaround Example #2

	5.15 Pipeline Hazards
	5.15.1 Read-After-Write Hazards
	5.15.2 Write-After-Write Hazards

	Chapter 6 Custom Instructions
	6.1 CFLUSH.I.L1
	6.2 CEASE
	6.3 PAUSE
	6.4 Branch Prediction Mode CSR
	6.4.1 Branch-Direction Prediction

	6.5 SiFive Feature Disable CSR
	6.6 Other Custom Instructions

	Chapter 7 Interrupts and Exceptions
	7.1 Interrupt Concepts
	7.2 Exception Concepts
	7.3 Trap Concepts
	7.4 Interrupt Block Diagram
	7.5 Local Interrupts
	7.6 Interrupt Operation
	7.6.1 Interrupt Entry and Exit

	7.7 Interrupt Control and Status Registers
	7.7.1 Machine Status Register (mstatus)
	7.7.2 Machine Trap Vector (mtvec)
	Mode Direct
	Mode Vectored

	7.7.3 Machine Interrupt Enable (mie)
	7.7.4 Machine Interrupt Pending (mip)
	7.7.5 Machine Cause (mcause)
	7.7.6 Minimum Interrupt Configuration

	7.8 Interrupt Priorities
	7.9 Interrupt Latency

	Chapter 8 Core-Local Interruptor (CLINT)
	8.1 CLINT Priorities and Preemption
	8.2 CLINT Vector Table
	8.3 CLINT Interrupt Sources
	8.4 CLINT Interrupt Attribute
	8.5 CLINT Memory Map
	8.6 Register Descriptions
	8.6.1 MSIP Registers
	8.6.2 Timer Registers

	Chapter 9 Platform-Level Interrupt Controller (PLIC)
	9.1 Memory Map
	9.2 Interrupt Sources
	9.3 Interrupt Priorities
	9.4 Interrupt Pending Bits
	9.5 Interrupt Enables
	9.6 Priority Thresholds
	9.7 Interrupt Claim Process
	9.8 Interrupt Completion
	9.9 Example PLIC Interrupt Handler

	Chapter 10 TileLink Error Device
	Chapter 11 Power Management
	11.1 Hardware Reset
	11.2 Early Boot Flow
	11.3 Interrupt State During Early Boot
	11.4 Other Boot Time Considerations
	11.5 Power-Down Flow

	Chapter 12 Debug
	12.1 Debug CSRs
	12.1.1 Trace and Debug Register Select (tselect)
	12.1.2 Trace and Debug Data Registers (tdata1-3)
	12.1.3 Debug Control and Status Register (dcsr)
	12.1.4 Debug PC (dpc)
	12.1.5 Debug Scratch (dscratch)

	12.2 Breakpoints
	12.2.1 Breakpoint Match Control Register (mcontrol)
	12.2.2 Breakpoint Match Address Register (maddress)
	12.2.3 Breakpoint Execution
	12.2.4 Sharing Breakpoints Between Debug and Machine Mode

	12.3 Debug Memory Map
	12.3.1 Debug RAM and Program Buffer (0x300–0x3FF)
	12.3.2 Debug ROM (0x800–0xFFF)
	12.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)
	12.3.4 Safe Zero Address

	12.4 Debug Module Interface
	12.4.1 DM Registers
	dmstatus register
	dmcontrol register

	12.4.2 Abstract Commands
	12.4.3 System Bus Access

	Chapter 13 Appendix
	13.1 Appendix A
	13.1.1 S5 Series

	Chapter 14 References

