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Version Date Changes
Fixed errata in which instruction fetches to
MMIO space could livelock
20G1.03.00 June 13, 2020 Fixed errata in which mtval/stval were

incorrectly set following EBREAK instruc-
tion

koala.02.00-preview

June 03, 2020

No functional changes

koala.01.00-preview

May 22, 2020

No functional changes

koala.00.00-preview

May 15, 2020

Changed clock, reset, and logic I/O ports
associated with debug

Change the Branch Predictor to Area-
Optimized

Reduced I$ associativity to 2-way

v19.08p3p0

April 30, 2020

Fixed issue in which mcause values did
not reset to O after reset

Added the "Disable Speculative 1$ Refill"
bit to the Feature Disable CSR to partially
mitigate undesired speculative accesses
to the Memory Port

Fixed issue in which unused logic in asyn-
chronous crossings (as found in the
Debug connection to the core) would
cause CDC lint warnings

Fixed issue in which WFI did not gate the
clock if the following instruction was a
memory access

Fixed issue in which performance coun-
ters set to count both exceptions and
other retirement events only counted the
exceptions

Fixed an issue in which ITIM fetch data
could be corrupted due to uninitialized I-
Cache tags

Various documentation fixes and improve-
ments

v19.08p2p0

December 06, 2019

Fixed erratum in which the TDO pin may
remain driven after reset

v19.08p1p0

November 08, 2019

Fixed erratum in which Debug.SBCS had
incorrect reset value for SBACCESS

Fixed typos and other minor documenta-
tion errors
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Changes

v19.08p0

September 17, 2019

The Debug Module memory region is no
longer accessible in M-mode

Addition of the CDISCARD instruction for
invalidating data cache lines without write-
back

v19.05p2

August 26, 2019

Fix for errata on 7-series cores with L1
data caches or L2 caches in which
CFLUSH.D.L1 followed by a load that is
nackid could cause core lockup.

Configuration of standard core parame-
ters updated to match web specification.
D-Cache size is now 32 kiB, Front Port
data width is now 64 bits, and DLS is now
present.

v19.05p1

July 22, 2019

SiFive Insight is enabled

Fix errata to enable debug halt from first
instruction out of reset

Enable debugger reads of Debug Module
registers when periphery is in reset

Fix errata to get illegal instruction excep-
tion executing DRET outside of debug
mode

v19.05

June 09, 2019

ITIM [Enabled]
Fast IO [Enabled]

Note: The v19.05 release of the S76 Stan-
dard Core contains a PLIC instead of a
CLIC and does not contain a Data Local
Scratchpad

v19.02

February 28, 2019

Early Access Release of the S76

Note: The Early Access release of the
S76 Standard Core does not contain an
ITIM or FIO SRAM, and contains a PLIC
instead of a CLIC
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SiFive’s S76 is a high performance implementation of the RISC-V RV64GC architecture. The
SiFive S76 is guaranteed to be compatible with all applicable RISC-V standards, and this docu-
ment should be read together with the official RISC-V user-level, privileged, and external debug

architecture specifications.

A summary of features in the S76 can be found in Table 1.

" 2._0A>2 " 20
2._(1A>2 2?20>6=(6<;
Number of Harts 1 Hart.
S7 Core 1 x S7 RISC-V core.
PLIC Interrupts 127 Interrupt signals, which can be connected to off-core-
complex devices.
PLIC Priority Levels The PLIC supports 7 priority levels.
Hardware Breakpoints 4 hardware breakpoints.
Physical Memory Protection PMP with 8 regions and a minimum granularity of 64 bytes.
Unit

(./792 S76 Feature Set

The S76 also has a number of on-core-complex configurability options, allowing one to tune the
design to a specific application. The configurable options are described in Section 13.1.

/<Al 056? <OA:z-2;0

This document describes the functionality of the S76. To learn more about the production deliv-
erables of the S76, consult the S76 User Guide.
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This is a general release of the S76, with a supported life cycle of two years from the release
date. Contact support@sifive.com if you have any questions.

" $B2>B62C

The S76 includes 1 x S7 64-bit RISC-V core, along with the necessary functional units required
to support the core. These units include a Core-Local Interruptor (CLINT) to support local inter-
rupts, a Platform-Level Interrupt Controller (PLIC) to support platform interrupts, physical mem-
ory protection, a Debug unit to support a JTAG-based debugger host connection, and a local
cross-bar that integrates the various components together.

The S76 memory system consists of a Data Cache, Data Local Store (DLS), Instruction Cache,
and Instruction Tightly-Integrated Memory (ITIM). The S76 also includes a Front Port, which
allows external masters to be coherent with the L1 memory system and access to the TIMs,
thereby removing the need to maintain coherence in software for any external agents.

An overview of the SiFive S76 is shown in Figure 1.

@ S7Series

2 |
1

0

CLINT

PLIC

Debug
D-Cache
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L2 Cache System Port Peripheral Port Front Port

VR
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64A>2 S76 Block Diagram
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The S76 memory map is detailed in Section 4.2, and the interfaces are described in full in the
S76 User Guide.

&Y 0 2

The S76 includes a 64-bit S7 RISC-V core, which has a dual-issue, in-order execution pipeline,
with a peak execution rate of two instructions per clock cycle. The S7 core supports machine
and user privilege modes, as well as standard Multiply (M), Single-Precision Floating Point (F),
Double-Precision Floating Point (D), Atomic (A), and Compressed (C) RISC-V extensions
(RV64GC).

The core is described in more detail in Chapter 3.

""2Z<>E "E?02:

The S76 memory system has a Level 1 memory system optimized for high performance. The
instruction subsystem consists of a 32 KiB, 2-way instruction cache.

The data subsystem is comprised of a high performance 32 KiB, 4-way L1 data cache.

The memory system is described in more detail in Chapter 3.

5 02>>A=(7

The S76 provides the standard RISC-V M-mode timer and software interrupts via the Core-
Local Interruptor (CLINT).

The S76 also includes a RISC-V standard Platform-Level Interrupt Controller (PLIC), which sup-
ports 127 global interrupts with 7 priority levels.

Interrupts are described in Chapter 7. The CLINT is described in Chapter 8. The PLIC is
described in Chapter 9.

2/A4 " A==<>)

The S76 provides external debugger support over an industry-standard JTAG port, including 4
hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 12, and the debug interface is described in the
S76 User Guide.

<-=0%.;02

The S76 is compliant to the following versions of the various RISC-V specifications:
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" *2>%<; | &.-063621 | ><F2;
RV64I 2.1 Y

D2 ;?6<;? FNH<; | &.063621 | ><F2;
Multiplication (M) 2.0 Y

Atomic (A) 2.0 Y
Single-Precision FP (F) 2.2 Y
Double-Precision FP (D) 2.2 Y
Compressed (C) 2.0 Y

2B6027? *2>70<; | &.063621 | ><F2;
Debug specification 0.13 Y

11
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@:

236 ; 66<;

Advanced Encryption Standard

(

Branch History Table

(

Branch Target Buffer

Cipher Block Chaining

Counter with CBC-MAC

Cipher FeedBack

Core-Local Interrupt Controller. Configures priorities and levels for core-
local interrupts.

Core-Local Interruptor. Generates per hart software interrupts and timer
interrupts.

CounTeR mode

Data Tightly Integrated Memory

Electronic Code Book

Galois/Counter Mode

HARdware Thread

Indirect-Jump Target Predictor

Instruction Tightly Integrated Memory

Joint Test Action Group

Loosely-Integrated Memory. Used to describe memory space delivered in
a SiFive Core Complex that is not tightly integrated to a CPU core.

Output FeedBack

%1

Platform-Level Interrupt Controller. The global interrupt controller in a
RISC-V system.

%" "%

Physical Memory Protection

& -

Return-Address Stack

&$

Used to describe a Read-Only register field.

&+

Used to describe a Read/Write register field.

Secure Hash Algorithm

(69216;8

A free and open interconnect standard originally developed at UC Berke-
ley.

(&t

True Random Number Generator

+ &!

Write-Any, Read-Legal field. A register field that can be written with any
value, but returns only supported values when read.

+ &

Writes-Ignored, Reads-Ignore field. A read-only register field reserved for
future use. Writes to the field are ignored, and reads should ignore the
value returned.

Write-Legal, Read-Legal field. A register field that should only be written
with legal values and that only returns legal value if last written with a
legal value.

+%&

Writes-Preserve, Reads-Ignore field. A register field that might contain
unknown information. Reads should ignore the value returned, but writes
to the whole register should preserve the original value.

Used to describe a Write-Only registers field.
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This chapter describes the 64-bit S7 RISC-V processor core, instruction fetch and execution
unit, L1 memory system, and external interfaces.

The S7 feature set is summarized in Table 2.

2_(1A>2 2?0>6=(6<;
ISA RV64GC
L1 Instruction Cache 32 KiB 2-way instruction cache
Instruction Tightly Integrated Memory (ITIM) 32 KiB ITIM
L1 Data Cache 32 KiB 4-way data cache
Data Local Store (DLS) 32 KiB DLS
Modes Machine mode, user mode
SiFive Custom Instruction Extension (SCIE) Not Present
Fast 1/10 Present

(.792 S7 Feature Set

- 20>A006<; ""2 - <>E "E?02 =

The instruction memory system consists of a dedicated 32 KiB 2-way set-associative instruction
cache and a 32 KiB Instruction Tightly-Integrated Memory (ITIM). The access latency of all
blocks in the instruction memory system is one clock cycle. The instruction cache is not kept
coherent with the rest of the platform memory system. Writes to instruction memory must be
synchronized with the instruction fetch stream by executinga ! (  $instruction.

The instruction cache has a line size of 64 bytes, and a cache line fill triggers a burst access
outside of the S76. The core caches instructions from executable addresses, with the exception
of the ITIM. See the S76 Memory Map in Section 4.2 for a description of executable address
regions that are denoted by the attribute , .

Trying to execute an instruction from a non-executable address results in a synchronous trap.

14
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; 20>A006<; 2005 ) ;68

The S7 instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to support
superscalar instruction execution. The instruction fetch unit contains sophisticated predictive
hardware to mitigate the performance impact of control hazards within the instruction stream.
The instruction fetch unit is decoupled from the execution unit, so that correctly predicted con-
trol-flow events usually do not result in execution stalls.

* A 4-entry branch target buffer (BTB), which predicts the target of taken branches and direct
jumps;

« A 2-entry indirect-jump target predictor (IJTP);

« A 3-entry return-address stack (RAS), which predicts the target of procedure returns;

* A 1.3 KiB branch history table (BHT), which predicts the direction of conditional branches.
The BHT is a correlating predictor that supports long branch histories.

The BTB has one-cycle latency, so that correctly predicted branches and direct jumps result in
in no penalty, provided the target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result
in any execution stalls if the fetch queue is sufficiently full.

The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-
agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that
miss in the BTB, the fetch bubble might not result in an execution stall.

Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves
later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps
incur a six-cycle penalty.

The S7 implements the standard Compressed (C) extension to the RISC-V architecture, which
allows for 16-bit RISC-V instructions.
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D20A06< ; %6=2%;2

F1 F2 D1 D2 AG M1 M2 wB

‘ Branch Predictor ‘ ‘ Data Cache/TIM
’—‘ R — ] Pipeline A

> >
Integer
Register

" .

Instruction Cache / TIM

‘ Multiply

I I I I Pipeline B

FP
RegFile

MHA&A&A@

Floating Point —

§4A>2 Example S7 Block Diagram

The S7 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:
two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),
address generation (AG), two stages of data memory access (M1 and M2), and register write-
back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is
fully bypassed so that most instructions have a one-cycle result latency:

16

» Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline stage.

If such an instruction’s operands are available when the instruction enters the AG stage,
then it executes in AG; otherwise, it executes in M2.

» Loads produce their result in the M2 stage. There is no load-use delay for most integer
instructions. However, effective addresses for memory accesses are always computed in t
AG stage. Hence, loads, stores, and indirect jumps require their address operands to be
ready when the instruction enters AG. If an address-generation operation depends upon a
load from memory, then the load-use delay is two cycles.

he

» Integer multiplication instructions consume their operands in the AG stage and produce their

results in the M2 stage. The integer multiplier is fully pipelined.

 Integer division instructions consume their operands in the AG stage. These instructions

have between a three-cycle and 64-cycle result latency, depending on the operand values.

* CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer
instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle
penalty.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data
hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-
vided the following constraints are met:
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* At most one instruction accesses data memory.

* At most one instruction is a branch or jump.

* At most one instruction is a floating-point arithmetic operation.

* At most one instruction is an integer multiplication or division operation.

< Neither instruction explicitly accesses a CSR.

0<.06;4 %<6;0 ;?0>A00<; (6z6;4

Single-precision floating-point unit instruction latency and repeat rates are described in Table 3.
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272 = /5E $=2>_f6<; 1.52;0 | 42721
&. 2
Sign Inject
=89J J1;,1J =31;4 S=31J 4S 2 1
=J>EA JI1;,1J ,1J =31;4 R=31J 43 4 2 1
=31J 43 4T
=J>EAE JI1;,1J ,1J =31;4 RU=31J 43 4 2 1
=31J 43 AT
=J>EA0 JI1;, 17 ,1J =31;4 R=31J 43 45 2 1
=31J 43 4 =31J 43 4T
Arithmetic
=8;; JI1;,1J ,1J =31;4 =31J 4 =31J 4 5 1
=JLO J1;,1J ,13 =31;4 =31J 4 \ =31J 4 5 1
=;eM J1;,13 ,1J =31;4 =31J 4 W =31J 4 9-36 8-33
=DbLC J1;,1J ,13 =31;4 =313 4V =313 4 5 1
=JHIK J1;, 13 =31;4 1=31J 4 9-28 8-33
=D8;; JI;,1J ,1J ,1J =31;4 =31J 4V =313 4 =31 4 |5 1
=DJL9 J1;,13 ,13 ,1J =31;4 =313 4V =313 4\ =314 |5 1
Negate Arithmetic
=E<> J1;,1d =31;4 \=31J 4 2 1
=ED8;; JI;,1J ,1J ,1J =31;4 \=31J 4 V =31J 4 \ 5 1
=31J 4
=EDJLY JI1;,1J ,1J ,1] =31;4 \=31J 4 V =31J 4 5 1
=31J 4
Compare
=<H JI;,1J,1J 031;4 =31J 4 =31J 4 4 1
=C< JI;, 13,1 031;:4 =314 =313 4 4 1
=CK J1;,13,13 031:;4 =31J 4 =31J 4 4 1
=D80 J1;,1J ,1J =31;4 D80 =31J 4 =31J 4 2 1
=D@E JI;,1J ,1J =31;4 D@E =31J 4 =31J 4 2 1
Categorize
=:C8JJ J1I;,1J 031;4 :C8JJ@=Py =31J 4 4 1
Convert Data Type
=:MK N J1;,1J 031;4 J<OK J = =31J 4 4 1
=:MK C J 13, 1J 031;4 J - =31J 4 N/A N/A
=:MK J N1I;,1J =31;4 = g3 031J 14 2 1
=:MK J C1;,1J =31;4 = 3 031J 4 N/A N/A
=:MK NL J1;,1J 031:;4 J<OK L = =31J 4 4 1
=:MK CL J1;,1J 031;4 L = =31J4 N/A N/A
=:MK J NL I, 1J =31;4 = _ 031J 4 2 1
=:MK J CL1I;,1J =31;4 = L 0313 14 N/A N/A
Move

(/92

Single-Precision FPU Instructions Latency and Repeat Rates
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=DM J1I;,1d =31;4 =31J 4 2 1
=DM N O I;,1J =31;4 031J 43 4 1 1
=DM O N 71;,1J 031;4 J<OK =31J 43 4 1 1
Load/Store
=CN I;, F==3<K 1J =31;4 *3031J 4 1 1
J<OK F==J<K 43 4
=IN1J |, F==J<K 1J 30313 4 J<OK F==J<K 4 1 1

=31J 43

4

(/92

Double-precision floating-point unit latency and repeat rates are described in Table 4.

Single-Precision FPU Instructions Latency and Repeat Rates
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272 = /5E $=2>_f6<; 1.52;0 | 42721
&. 2
Sign Inject
=89J ; 1;,1J =31;4 S=31J 4S 2 1
=J>EA ;1,13 ,1J =31;4 R=31J 43 4 2 1
=31J 43 4T
=J>EAE ; I1;,1J ,1J =31;4 RU=31J 43 4 2 1
=31J 43 AT
=J>EAO0 ; 1;,1J ,1J =31;4 R=31J 43 45 2 1
=31J 43 4 =31J 43 4T
Arithmetic
=8;; ;1;,1J ,13 =31;4 =31J 4 =31J 4 7 1
=JLO ;15,13 ,13 =31;4 =31J 4 \ =31J 4 7 1
=:@M ;1,13 ,1J =31;4 =31J 4 W =31J 4 9-58 8-58
=DLC ; 1;,1J ,13 =31;4 =313 4V =313 4 7 1
=JHIK ; 1;,1J =31;4 1=31J 4 9-57 8-58
=D8;; ;I1;,13 ,1J ,1J =31;4 =31J 4V =313 4 =313 4 |7 1
=DJLo ;;1;,13 ,1J ,1J =31;4 =313 4V =313 4\ =313 4 |7 1
Negate Arithmetic
=E<> ; 1;,1J =31:4 \=31J 4 2 1
=ED8;; ;I1;,1J ,1J ,1J =31;4 \=31J 4 V =31J 4 \ 7 1
=31J 4
=EDJLY ; 1;,1J ,1J ,1J =31;4 \=31J 4 V =31J 4 7 1
=31J 4
Compare
=<H ;1;,1J,1J 031;4 =31J 4 =31J 4 4 1
=C< ;1;, 13,1 031;:4 =314 =313 4 4 1
=CK ;1,13 ,13d 031:;4 =31J 4 =31J 4 4 1
=D80 ; I1;,1J ,1J =31;4 D80 =31J 4 =31J 4 2 1
=D@E ; I;,1J ,1J =31;4 DEE =31J 4 =31J 4 2 1
Categorize
=:C8JJ ;1I1;,1J 031;4 :C8JJ@=P. =31J 4 4 1
Convert Data Type
=:MK N ; I;,1J 031;4 J<OKJ = =31J 14 4 1
=:MK C ; 13, 1J 031;4 J - =31J 4 N/A N/A
=:MK ; NI;,1J =31;4 = g3 031J 14 2 1
=:MK ; CI;, 1J =31;4 = 3 O031J 4 N/A N/A
=:MK NL ; I;,1J 031:;4 J<OK L = =31J 4 4 1
=:MK CL ; I;,1J 031;4 L = =31J4 N/A N/A
=:MK ; NL I, 1J =31;4 = _ 031J 4 2 1
=:MK ; CL1I;,1J =31;4 = L 0313 14 N/A N/A
=:MK J ;13,13 =31;4 = - =31J 4 2 1
(./792 Double-Precision FPU Instructions Latency and Repeat Rates
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=:MK ; JI;, 1J =31;4 = = =31J 4 2 1
Move

=DM ; I;,1J =31;4 =31J 4 2 1

=DM ; O3, 1J =31;4 031J 43 4 N/A N/A

=DM O ; I;,1J 031;4 =31J 43 4 N/A N/A

Load/Store

=C; I;, F==J<K 1J =31;4 "3031J 4 1 1
J<OK F==J<K 43 4

=J; 1J ,F==J<K 1J *3031J 4 J<OK F==J<K 4 1 1
=31J 43 4

(./792 Double-Precision FPU Instructions Latency and Repeat Rates

(0. ""2-<>E "E?02 -

The S7 data memory system has a 4-way set-associative 32 KiB write-back data cache that
supports 64-byte cache lines. The access latency is two clock cycles for words and double-
words, and three clock cycles for smaller quantities. Misaligned accesses are not supported in
hardware and result in a trap to support software emulation.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.
Loads to addresses currently in the store pipeline result in a five-cycle penalty. The S7 core also
contains a 32 KiB Data Local Store (DLS). The DLS is a directly addressable scratchpad mem-
ory that shares a clock with its core. Memory accesses from a core to its DLS have a fixed
latency. The DLS may be accessed by other mastering devices on the bus, although accesses
from other devices will have higher latencies.

(< z60 ""2 = <>E $=2>_{6<;?

The S7 core supports the RISC-V standard Atomic (A) extension on the Peripheral Port.

Atomic memory operations to regions that do not support them generate an access exception
precisely at the core.

The load-reserved and store-conditional instructions are only supported on cached regions, thus
generate an access exception on uncached memory regions.

See Section 5.4 for more information on the instructions added by this extension.

9<_06;4 %<6;0 ) ;60 %)

The S7 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for
32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined
fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators,
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and float-to-integer conversion units, all with full hardware support for subnormals and all IEEE
default values.

See Section 5.5 for more information on 32-bit single-precision instructions and Section 5.6 for
the 64-bit double-precision instructions.

%5E?60.9 "2 = <E %><0200<; %""%

Machine mode is the highest privilege level and by default has read, write, and execute permis-
sions across the entire memory map of the device. However, privilege levels below machine
mode do not have read, write, or execute permissions to any region of the device memory map
unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may may
grant permissions to specific regions of the device’s memory map, but it can also revoke per-
missions when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in
user mode. For machine mode, PMP checks do not occur unless the lock bit (&) is set in the
GDG:=>2 CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is user
(DIKBKLJI =** 0 ), and the Modify Privilege bit is set (DJK8KLJ "*+/ ). For virtual address
translation, PMP checks are also applied to page table accesses in supervisor mode.

The S7 PMP supports 8 regions with a minimum region size of 64 bytes.

This section describes how PMP concepts in the RISC-V architecture apply to the S7. For addi-
tional information on the PMP refer to The RISC-V Instruction Set Manual, Volume IlI: Privileged
Architecture, Version 1.10.

%" "% A;0fi<;.9 2?0>6=(6<;

The S7 PMP unit has 8 regions and a minimum granularity of 64 bytes. Access to each region is
controlled by an 8-bit GDG1:=> field and a corresponding GDG8; ; 11 register. Overlapping
regions are permitted, where the lower numbered GDG1:=> and GDGS8; ; 11 registers take priority
over highered numbered regions. The S7 PMP unit implements the architecturally defined
GDG:=>2 CSR GDG:=> , supporting 8 regions. GDG:=> is implemented, but hardwired to zero.
Access to GDG:=> or GDG:=> results in an illegal instruction exception.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-
missions on U-mode accesses. However, locked regions (see Section 3.6.2) additionally
enforce their permissions on M-mode.
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%" "% &246<; 1<086;4

The PMP allows for region locking whereby, once a region is locked, further writes to the config-
uration and address registers are ignored. Locked PMP entries may only be unlocked with a
system reset. A region may be locked by setting the & bit in the GDG1:=> register.

In addition to locking the PMP entry, the & bit indicates whether the R/W/X permissions are
enforced on machine mode accesses. When the & bit is clear, the R/W/X permissions apply only
to U-mode.

%" "% &2467?(2>?

Each PMP region is described by an 8-bit GDG1:=> field, used in association with a 64-bit
GDGS8; ; 11 register that holds the base address of the protected region. The range of each
region depends on the Addressing ( ) mode described in the next section. The GDG1:=> fields
reside within 64-bit GDG:=>2 CSRs.

Each 8-bit GDG1:=> field includes a read, write, and execute bit, plus a two bit address-matching
field , and a Lock bit, & Overlapping regions are permitted, where the lowest numbered PMP
entry wins for that region.

%% <;34A>.06<; &246?02>7?
For RV64 architectures, GDG:=> and GDG:=> are not implemented. This reduces the footprint
since GDG:=> already contains configuration fields GDG :=> through GDG :=> for both RV32
and RV64.

63 ol NN .7 At EPC N S 23 &5 87 0

l pmp7cfg ‘ pmp6cfg ‘ pmp5cfg ‘ pmp4cfg ‘ pmp3cfg ‘ pmp2cfg ‘ pmplcfg pmpOcfg

§4A>2 RV64 GDG:=> Register

63 5655 447 4@B9 3231 2423 1615 87 0
l pmpl5cfg ‘ pmpl4cfg ‘ pmp1l3cfg ‘ pmpl2cfg ‘ pmpllcfg ‘ pmp1l0cfg ‘ pmp9cfg ‘ pmp8cfg ‘

§4A>2 RV64 GDG:=> Register

The GDG:=>2 and GDG8; ; 11 registers are only accessible via CSR specific instructions such as
:J11 for reads, and :JIN for writes.

7 6 ' 5 4 ' 3 2 1 0
| Lwary) | 0 (WARL) \ A (WARL) | xwary [ wwarL | RwaRL)

64A>2 RV64 GDG1:=> bitfield




Copyright © 2019-2020, SiFive Inc. All rights reserved. 24

60 2?20>6=(6< ;

0 | & &2.1%2>z6?2?6<;7?

0x0 - No read permissions for this region

0x1 - Read permission granted for this region

1 + 602 %2>z 6?776<;?

0x0 - No write permissions for this region

0x1 - Write permission granted for this region

2 , D20Af2 =2>z6??6<;?

0x0 - No execute permissions for this region

0x1 - Execute permission granted for this region

[4:3] 11>2?7? - .(056;4 -<12

0x0 - PMP Entry disabled

0x1 - Top of Range (TOR)

0x2 - Naturally Aligned Four Byte Region (NA4)

0x3 - Naturally Aligned Power-of-Two region, > 8 bytes (NAPOT)

7 I 1<08 6

0x0 - PMP Entry Unlocked, no permission restrictions applied to machine mode. PMP
entry only applies to S and U modes.

0x1 - PMP Entry Locked, permissions enforced for all privilege levels including
machine mode. Writes to GDG1:=> and GDG:=>2 are ignored and can only be cleared
with system reset.

(.72 GDG1:=> Bitfield Description

Note: The combination of + and 0 is not currently implemented.

Out of reset, the PMP register fields and & are set to 0. All other hart state is unspecified by
The RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.10.

Additional details on the available address matching modes is described below.
D The attributes are disabled. No PMP protection applied for any privilege level.

D Top of range (TOR). Supports four byte granularity, and the regions are defined by
[PMP(i - 1) > a > PMP(i)], where 'a’ is the address range. PMP(i) is the top of the range, where
PMP(i - 1) represents the lower address range. If only GDG :=> selects TOR, then the lower
bound is set to address 0x0.

D Naturally aligned four-byte region (NA4). Supports only a four-byte region with four
byte granularity. Not supported on SiFive U7 series cores since minimum granularity is 4 KiB.

D Naturally aligned power-of-two region (NAPOT), = 8 bytes. When this setting is pro-
grammed, the low bits of the GDG8; ; 11 register encode the size, while the upper bits encode the
base address right shifted by two. There is a zero bit in between, we will refer to as the least sig-
nificant zero bit (LSZB).

Some examples follow using NAPOT address mode.
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22 &2di<: | 1°-
115222 “F2 | weopiec: | PMPRAArX.0A2

0] 6 8B 0 0] 6 S Y9

0 6 32B 2 0 6 S Y9

0 6 4 KB 9 0] 6 S Y9 6 6

0 6 64 KB 13 0 6 S YO 6 6 6

0 6 1 MB 17 0] 6 S Y9 6 6 6 6

*Region size is 2(-578+3),
(./792 GDG8; ; 11 Encoding Examples for A=NAPOT

%" % 11>2?7 &246?0(2>?

The PMP has 8 address registers. Each address register GDG8; ; 11 correlates to the respective
GDG1:=> field. Each address register contains the base address of the protected region right
shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC-V Instruction Set Manual, Volume II: Privi-
leged Architecture, Version 1.10 are [55:2].

[ owary [T address[55:2] (WARL) T T

64A>2 RV64 GDGS8; ; 11 Register

%ll% . ;1%ll

The PMP values are used in conjunction with the Physical Memory Attributes (PMAS) described
in Section 4.1. Since the PMAs are static and not configurable, the PMP can only revoke read,
write, or execute permissions to the PMA regions if those permissions already apply statically.

%" "% %><4>_ = Z6;4 $B2>B62C

The PMP registers can only be programmed in machine mode. The GDG8; ; 11 register should
be first programmed with the base address of the protected region, right shifted by two. Then,
the GDG:=>2 register should be programmed with the properly configured 64-bit value containing
each properly aligned 8-bit GDG1:=> field. Fields that are not used can be simply written to 0,
marking them unused.

%""% %><4>. - -6;4 D.-=92

The following example shows a machine mode only configuration where PMP permissions are
applied to three regions of interest, and a fourth region covers the remaining memory map.
Recall that lower numbered GDG1:=> and GDGS8; ; 11 registers take priority over higher numbered
regions. This rule allows higher numbered PMP registers to have blanket coverage over the
entire memory map while allowing lower numbered regions to apply permissions to specific
regions of interest. The following example shows a 64 KB Flash region at base address 0 , a
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32 KB RAM region at base address 0 6 , and finally a 4 KB peripheral region at base
address base 0 6 . The rest of the memory map is reserved space.

0x0000_0000

Read, Execute Region 0: TOR for 64KB region
Flash I:; - pmpOcfg = 86'1000_1101 (0x8D)

- pmpaddr0 = 0x0000_4000

Read, Write Region 1: NAPOT for 32KB region
RAM
- pmpicfg = 80'1001_1011 (0X9B)

0x2000_8000 - pmpaddrl = 0x0800_OFFF (LSZB = 12)

0X3000_0000 e Read, Write Region 2: NAPOT for 4KB region
Peripherals
0%3000_1000 P - pmp2cfg = 8b'1001_1011 (0x9B)

- pmpaddr2 = 0x0C00_O1FF (LSZB = 9)

No Access E Region 3: NAPOT for 4GB region
(Al other memory) - pmp3cfg = 8b'1001_1000 (0x98)

- pmpaddr3 = 0x1FFF_FFFF (LSZB = 29)

0x0001_0000

0x2000_0000

OXFFFF_FFFF

bit 7 bit 0

pmpXcfg [t [oJoJana[x]w]r]

2b'01 = TOR
2b'11 = NAPOT

64A>2 PMP Example Block Diagram

%""% 002?77 "02; .>6<?

The &, +, 0, and 1 bits only determine if an access succeeds if all bytes of that access are cov-
ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range
0xC-0xF, then an 8-byte access to the range 0x8—0xF will fail, assuming that PMP entry is the
highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (& ), if a PMP entry matches all
bytes of an access, the access succeeds. If the lock bit is set (& ) while in machine mode, then
the access depends on the permissions set for that region. Similarly, while in Supervisor mode,
the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction
access fault would occur on a failed instruction fetch. When an exception occurs while attempt-
ing to execute from a region without execute permissions, the fault occurs on the fetch and not
the branch, so the D<G: CSR will reflect the value of the targeted protected region, and not the
address of the branch.
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It is possible for a single instruction to generate multiple accesses, which may not be mutually
atomic. If at least one access generated by an instruction fails, then an exception will occur. It
might be possible that other accesses from a single instruction will succeed, with visible side
effects. For example, references to virtual memory may be decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be
decomposed into multiple accesses, some of which may succeed before an access exception
occurs. In particular, a portion of a misaligned store that passes the PMP check may become
visible, even if another portion fails the PMP check. The same behavior may manifest for float-
ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store
address is naturally aligned.

%" "% .;1%.46;4

The Physical Memory Protection mechanism is designed to compose with the page-based vir-
tual memory systems described The RISC-V Instruction Set Manual, Volume II: Privileged Archi-
tecture, Version 1.10. When paging is enabled, instructions that access virtual memory may
result in multiple physical-memory accesses, including implicit references to the page tables.
The PMP checks apply to all of these accesses. The effective privilege mode for implicit page-
table accesses is S.

Implementations with virtual memory are permitted to perform address translations speculatively
and earlier than required by an explicit virtual-memory access. The PMP settings for the result-
ing physical address may be checked at any point between the address translation and the
explicit virtual-memory access. A mis-predicted branch to a non-executable address range does
not generate a trap. Hence, when the PMP settings are modified in a manner that affects either
the physical memory that holds the page tables or the physical memory to which the page
tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-
tem. This is accomplished by executing an ,! ( /" instructionwith1J 0 and1J O ,
after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses
check the PMP settings synchronously, so no fence is needed.

%" "% 16 = 60.06<;?

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions
on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,
SiFive designs may contain a Front Port to allow external bus masters access to the full mem-
ory map of the system. The PMP cannot prevent access from external bus masters on the Front
Port.

25.Bb6<> 3<> &246<;? CHI5<AD %" "% %><[2006< ;

If a non-reserved region of the memory map does not have PMP permissions applied, then by
default, supervisor or user mode accesses will fail, while machine mode access will be allowed.
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Access to reserved regions within a device’s memory map (an interrupt controller for example)
will return Ox0 on reads, and writes will be ignored. Access to reserved regions outside of a
device’'s memory map without PMP protection will result in a bus error.

.052 9A?5 25.Bb6<> <; %""% %><(20021 &246<;

When a line is brought into cache and the PMP is set up with the lock (&) bit asserted to protect
a part of that line, a data cache flush instruction will generate a store access fault exception if
the flush includes any part of the line that is protected. The cache flush instruction does an
invalidate and write-back, so it is essentially trying to write back to the memory location that is
protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-
ceed and not generate an exception. If a data cache flush is required without a write-back, use
the cache discard instruction instead, as this will invalidate but not write back the line.

D1C 52 %2>3<> - . ;02 "< h0<>

The S7 processor core supports a basic hardware performance monitoring (HPM) facility. The
performance monitoring faculty is divided into two classes of counters: fixed-function and event-
programmable counters. These classes consist of a set of fixed counters and their counter-
enable registers, as well as a set of event-programmable counters and their event selector reg-
isters. The registers are available to control the behavior of the counters. Performance monitor-
ing can be useful for multiple purposes, from optimization to debug.

%2>3<>z ;02 ""<;60<>6;4 <A;02>? &2?20 25.Bb6<>

At system reset, the hardware performance monitor counters are not reset and thus have an
arbitrary value. Users can write desired values to the counter control and status registers
(CSRs) to start counting at the given, known value.

D21 A;Off<; %2>3<>z .;02 ""<;60<>6;4 <A;([2>?

A fixed-function performance monitor counter is hardware wired to only count one specific event
type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only
modification to the fixed-function performance monitoring counters that can be done is to enable
or disable counting, and write the counter value itself.

The S7 processor core contains two fixed-function performance monitoring counters.

D21 A;Ofi<; E092 <A;@2> mcycle

The fixed-function performance monitoring counter D:P:C< holds a count of the number of clock
cycles the hart has executed since some arbitrary time in the past. The D:P:C< counter is read-
write and 64 bits wide. Reads of D:P:C< return all 64 bits of the D:P:C< CSR.
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6021 A;0f6<; ;?0>A006<;? &20>21 <A;02> minstret

The fixed-function performance monitoring counter D@EJK 1<K holds a count of the number of
instructions the hart has retired since some arbitrary time in the past. The D@EJKI<K counter is
read-write and 64 bits wide. Reads of D@EJK 1<K return all 64 bits of the D@EJIK 1<K CSR.

B2:;0 %><4>. = = ./92 %2>3<>z . ;02 ""<;00<>6;4 <A;(2>?

Complementing the fixed-function counters are a set of programmable event counters. The S7
HPM includes two addtitional event counters, D?GD:FLEK<I and D?GD:FLEK<I . These pro-
grammable event counters are read-write and 64 bits wide. The hardware counters themselves
are implemented as 40-bit counters on the S7 core series. These hardware counters can be
written to in order to initialize the counter value.

B2;0 "29200<> &246?02>?

To control the event type to count, event selector CSRs D?GD<M<EK and D?GD<M<EK are used
to program the corresponding event counters. These event selector CSRs are 64-bit + &1 reg-
isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the
upper bits form a mask of events in that class.

MXLEN-1 26|25 8|7 0

(Unimplemented Bits) Event Mask Event Class

64A>2 Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if
D?GD<M<EK issetto O , then D?GD:FLEK<I1 will increment when eitehr a load instruction
or a conditional branch instruction retires. An event selector of 0 means "count nothing".

B2;0 "29200<> ;0<16;47

Table 7 describes the event selector encodings available. Events are categorized into two
classes based on the Event Class field encoded in D?GD<M<EK13 4. One or more events can
be programmed by setting the respective Event Mask bit for a given event class. An event
selector encoding of 0 means "count nothing". Multiple events will cause the counter to incre-
ment any time any of the selected events occur.
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"t.056;2 >1C.>2 %2>3<>c ;02 ""<;6i<> B2;0 &2467(2>
Instruction Commit Events, D?GD<M<EK13 4

60 220>6=f<;

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

Microarchitectural Events , D?GD<M<EK13 4

6 2?20>6=f6< ;

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

Memory System Events, D?GD<M<EK13 4

60 2?20>6=(6<;

8 Instruction cache miss

9 Data cache miss or memory-mapped I/O access

10 Data cache write-back

(.72 D?GD<M<EK Register

Event mask bits that are writable for any event class are writable for all classes. Setting an
event mask bit that does not correspond to an event defined in Table 7 has no effect for current
implementations. However, future implementations may define new events in that encoding
space, so it is not recommended to program unsupported values into the D?GD<M<EK registers.

<:z/6;6;4 B2;0?

Itis common usage to directly count each respective event. Additionally, it is possible to use
combinations of these events to count new, unique events. For example, to determine the aver-
age cycles per load from a data memory subsystem, program one counter to count "Data cache/
DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide
the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction
count and the result is the average cycle time for loads in cycles per instruction.
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It is important to be cognizant of the event types being combined; specifically, event types
counting occurrences and event types counting cycles.

<A;02> ;./92 &24§?(2>?

The 32-bit counter-enable register D: FLEK<I<E controls the availability of the hardware perfor-
mance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these
enable registers does not affect the underlying counters, which continue to increment when not
accessible.

When any bit in the D:FLEK<I<E register is clear, attempts to read the cycle, time, instruction
retire, or ?GD:FLEK<11 register while executing in U-mode will cause an illegal instruction
exception. When one of these bits is set, access to the corresponding register is permitted in the
next implemented privilege mode, U-mode.

D:FLEK<I<Eis a + &! register. Any of the bits may contain a hardwired value of zero, indicat-
ing reads to the corresponding counter will cause an illegal instruction exception when execut-
ing in a less-privileged mode.

20 $

The Fast I/O feature improves the performance of the memory-mapped I/O (MMIO) subsystem.
Fast I/O enables a sustained rate of one MMIO operation per clock cycle. By contrast, when this
feature is excluded, MMIO loads can only sustain half that rate.

Fast I/O also eliminates pipeline flushes due to register-file write-port conflicts on MMIO load
responses. Fast I/O also disables load-hit speculation when the load or store base address lies
within an 1/O region, further reducing pipeline-flush events.

%<>(?

This section describes the Port interfaces to the S7 core.

>< ;0 %<>l

The Front Port can be used be external masters to read from and write into the memory system
utilizing any port in the Core Complex. The ITIM can also be accessed through the Front Port.

If a Front Port access targets the Memory Port, a coherency manager is reponsible for maintain-
ing coherency with the L1 data cache. A read access can be returned directly from the cache
without generating an external bus access. If a write from the Front Port targets a location allo-
cated in the cache, it results in the line being evicted and invalidated. The write will then pro-
ceed to external memory.
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Any Front Port access that targets the Memory Port and results in a cache miss will result in an
external memory access.

The S76 User Guide describes the implementation details of the Front Port.

"2 - <OE %<

The Memory Port is used to interface with memory that offers the highest performance for the
S76, such as DDR. It supports cacheable accesses for data and instructions.

Consult Section 4.1 for futher information about the Memory Port and its Physical Memory
Attributes.

See the S76 User Guide for a description of the Memory Port implementation in the S76.

%2>6=52>.9 %<>}

The Peripheral Port is used to interface with lower speed peripherals and also supports code
execution. When a device is attached to the Peripheral Port, it is expected that there are no
other masters connected to that device.

The Peripheral Port supports the RISC-V standard Atomic (A) extension, which is useful for pro-
gramming peripherals. See Chapter 5 for more information on the instructions added by this
extension.

Consult Section 4.1 for futher information about the Peripheral Port and its Physical Memory
Attributes.

See the S76 User Guide for a description of the Peripheral Port implementation in the S76.

"E?02 = %<>{

The System Port is used to interface with lower performance memory, like SRAM, memory-
mapped I/0 (MMIO), and higher speed peripherals. The System Port also supports code execu-
tion.

Consult Section 4.1 for futher information about the System Port and its Physical Memory Attrib-
utes.

See the S76 User Guide for a description of the System Port implementation in the S76.

Note that the System Port does not support Atomic instructions.
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This chapter describes the S76 physical memory attributes and memory map.

%5E?60.9""2 - <>E (i>6/A02? $B2>B62C

The memory map is divided into different regions covering on-core-complex memory, system
memory, peripherals, and empty holes. Physical memory attributes (PMAs) describe the proper-
ties of the accesses that can be made to each region in the memory map. These properties
encompass the type of access that may be performed: execute, read, or write. As well as other
optional attributes related to the access, such as supported access size, alignment, atomic
operations, and cacheability.

RISC-V utilizes a simpler approach than other processor architectures in defining the attributes
of memory accesses. Instead of defining access characteristics in page table descriptors or
memory protection logic, the properties are fixed for memory regions or may only be modified in
platform-specific control registers. As most systems don’t require the ability to modify PMAS,
SiFive cores only support fixed PMAs, which are set at design time. This results in a simpler
design with lower gate count and power savings, and an easier programming interface.

External memory map regions are accessed through a specific port type and that port type is
used to define the PMAs. The port types are Memory, Peripheral, and System. Memory map

regions defined for internal memory and internal control regions also have a predefined PMA
based on the underlying contents of the region.

The assigned PMA properties and attributes for S76 memory regions are shown in Table 8 and
Table 9 for external and internal regions, respectively.

The configured memory regions of the S76 are listed with their attributes in Table 10.

33
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%<>f (E=2

002?27 %><=2>(h2?

16>6/AB27?

Memory Port

Read, Write, Execute

Data Cacheable, Instruction Cacheable,
Instruction Speculation

Peripheral Port

Read, Write, Execute

Atomics, Instruction Cacheable

System Port

Read, Write, Execute

Instruction Cacheable

(./792 Physical Memory Attributes for External Regions
&246<; 002?? Y%><=2>[62? 16>6/ AG27?
CLINT Read, Write Atomics
Data Local Store Read, Write, Execute | Atomics
Debug None N/A
Error Device Read, Write, Execute | Atomics
ITIM Read, Write, Execute | Atomics, Instruction Speculation
PLIC Read, Write Atomics
Reserved None N/A
(./792 Physical Memary Attributes for Internal Regions

All memory map regions support word, half-word, and byte size data accesses.

Atomic access support enables the RISC-V standard Atomic (A) Extension for atomic instruc-
tions. These atomic instructions are further documented in Section 3.4 for the S7 core. The

load-reserved (LR) and store-conditional (SC) instructions are only supported on the data
cacheable region, marked in Table 8 with "Atomics+LR/SC".

No region supports unaligned accesses. An unaligned access will generate the appropriate trap:

instruction address misaligned, load address misaligned, or store/AMO address misaligned.

All accesses to the Debug Module from the core in non-Debug mode will trap.

The Physical Memory Protection unit is capable of controlling access properties based on

address ranges, not ports. It has no control over the attributes of an address range, however.

"2 -<E UL

The memory map of the S76 is shown in Table 10.
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.22 (<= 6> 2?20>6=(6<;
0 6 0 6 111 Debug
0 6 0 6 111 Reserved
0 6 0 6 111 | +01 Error Device
0 6 0 161111 Reserved
0 6 0 6 111 | +01 ITIM
0 6 0O 111Gl Reserved
0 6 0 errrr | +0 CLINT
0 6 O gl Reserved
0] 6 O rrigliiry | 40 PLIC
0 6 O 111G Reserved
0 6 O rrigly | +01$ Peripheral Port (512 MiB)
0 6 O 1rIGIINl | +01% System Port (512 MiB)
0 6 O gl Reserved
0 6 0 6 111 | +01 Data Local Store
0 6 O 1rigln Reserved
0 6 O 11! | +01% Memory Port (512 MiB)
0 6 orrrigrinl Reserved

(.792 S76 Memory Map. Physical Memory Attributes: &—Read,

+-Write, ,—Execute, —Instruction Cacheable, —Data Cacheable,

—Atomics
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The S76 implements the 64-bit RISC-V architecture. The following chapter provides a reference
for programmers and an explanation of the extensions supported by RV64GC.

This chapter contains a high-level discussion of the RISC-V instruction set architecture and
additional resources which will assist software developers working with RISC-V products. The
S76 is an implementation of the RISC-V RV64GC architecture, and is guaranteed to be compat-
ible with all applicable RISC-V standards. RV64GC can emulate almost any other RISC-V ISA
extension.

_?2 ;?20A00<; <>z _(07?

RISC-V base instructions are fixed to 32 bits in length and must be aligned on a four-byte
boundary in memory. RISC-V ISA keeps the source (1J and 1J ) and destination (1 ;) registers
at the same position in all formats to simplify decoding, with the exception of the 5-bit immedi-
ates used in CSR instructions.

The various formats are described in Table 11 below.

<>: .0 27?20>6=f< ;
R Format for register-register arithmetic/logical operations.
I Format for register-immediate ALU operations and loads.
S Format for stores.
B Format for branches.
U Format for 20-bit upper immediate instructions.
J Format for jumps.
(.792 Base Instruction Formats
31' . . . '25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . '0

funct7 rs2 rsl funct3 rd opcode
L L L L L T S

§4A>2 R-Type

36
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31' . . . '20 19' '15 14' '12 11' . . '7 . .
imm[11:0] rsl funct3 rd opcode
64A>2 I-Type
31' . . . . '25 24' '20 19' '15 14' '12 11' . . '7 . .
imm[11:5] rs2 rsl funct3 imm[4:0] opcode
64A>2 S-Type
31 30 25 24 20 19 15 14 12 11 8 7
~ T T T T T T T T T T T T T T — T T
— —
B imm[10:5] rs2 rsl funct3 imm[4:1] = opcode
E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E 1 1
64A>2 B-Type
31 T T T T T T T 12 llv T T T 7 T T
imm[31:12] rd opcode
64A>2 U-Type
31 30 21 20 19 12 11 7
o T T T T T — T T T T T T T T T
o~ —
B imm[10:1] B imm[19:12] rd opcode
E 1 1 1 1 1 1 1 E 1 1 1 1 1 1 1 1 1 1 1 1

The <=0<12 field partially specifies an instruction, combined with 3A;00 + 3A;00 which
describe what operation to perform. Each register field (>? , >? , >1) holds a 5-bit unsigned inte-
ger (0-31) corresponding to a register number (0 -0 ). Sign-extension is one of the most criti-
cal operations on immediates (particularly for XLEN>32), and in RISC-V the sign bit for all
immediates is always held in bit 31 of the instruction to allow sign-extension to proceed in paral-
lel with instruction decoding.

D02 ; ?6<;

§4A>2 J-Type

tional instructions don't cause arithmetic exceptions.

"0.:1.>1 ;0242> ;?0>A00<;?

This section discusses the standard integer instructions supported by RISC-V. Integer computa-
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& (E=2 &246?242> .?21 ;0(242> ;7?(>A0f6<;?

3A; 00 3A; 00 <=0<12 ; 20>A006< ;
00000000 | rs2 | rs1 | 000 rd | 0110011 | ADD
01000000 | rs2 | rs1 | 000 rd | 0110011 | SUB
00000000 | rs2 | rs1 | 001 rd | 0110011 | SLL
00000000 | rs2 | rs1 | 010 rd | 0110011 | SLT
00000000 | rs2 | rs1 | 011 rd | 0110011 | SLTU
00000000 | rs2 | rs1 | 100 rd | 0110011 | XOR
00000000 | rs2 [ rs1 | 101 rd | 0110011 | SRL
01000000 | rs2 | rs1 | 101 rd | 0110011 | SRA
00000000 | rs2 | rs1 | 110 rd | 0110011 | OR
00000000 | rs2 | rs1 | 111 rd | 0110011 | AND

; 20>A0(6< ; 2?20>6=(6<;

ADD1;,1J ,1J Performs the addition of 1J and 1J , result stored in 1;.

SUBI1;, 13,17 Performs the subtraction of 1J from 1J , result stored in I;.

SLL1;, 13 ,1J Logical left shift (zeros are shifted into the lower bits) shift
amount is encoded in the lower 5 bits of 1J .

SLT1;,0,1J Signed and compare sets I; to 1 if 1J is not equal to zero, oth-
erwise sets I; to zero.

SLTU 1;,0 , 17 Unsigned compare sets 1; to 1if 1J is not equal to zero, other-
wise sets 1; to zero.

SRL1I;, 13,1 Logical right shift (zeros are shifted into the lower bits) shift
amount is encoded in the lower 5 bits of 1J .

SRAI;, 13,13 Arithmetic right shift, shift amount is encoded in the lower 5 bits
of 1J .

ORI, 1J,1] Bitwise logical OR.

AND I;,1J ,1J Bitwise logical AND.

XOR1;,13 ,13 Bitwise logical XOR.

Below is an example of an ADD instruction.

120 D D

31 25 24 20 19 15 14 12 11 7 6 0
’ ADD ‘ rs2=10 ‘ rsl=19 ‘ ADD ‘ rd=18 ‘ Reg-Reg OP
o oo o0 o0o0o0 0101901001 10 00 1 0 01 00 1 1 0 0 1 1

§4A>2 ADD Instruction Example

(E=2 ;0242> ;?(>A00<;?

For I-Type integer instruction, one field is different from R-format. 1J and =LE:K are replaced
by the 12-bit signed immediate, @DD3 4, which can hold values in range [-2048, +2047]. The
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immediate is always sign-extended to 32-bits before being used in an arithmetic operation. Bits
[31:12] receive the same value as bit 11.

e 3A;0 <=0<12 : 20>A006< ;
imm[11:0] rs1 | 000 rd | 0010011 | ADDI
imm[11:0] rs1 | 010 rd | 0010011 | SLTI
imm[11:0] rs1 | 011 rd | 0010011 | SLTIU
imm[11:0] rs1 | 100 rd | 0010011 | XORI
imm[11:0] rsl | 110 rd | 0010011 | ORI
imm[11:0] rsl | 111 rd | 0010011 | ANDI
00000000 | shamnt | rs1 | 001 rd | 0010011 | SLLI
00000000 | shamnt | rs1 | 101 rd | 0010011 | SRLI
01000000 | shamnt | rs1 | 001 rd | 0010011 | SRAI

One of the higher-order immediate bits is used to distinguish "shift right logical" (SRLI) from
"shift right arithmetic" (SRAI).

; 20>A0(6< ; 2?20>6=(6<;

ADDI Adds the sign-extended 12-bit immediate to register 1J . Arithmetic overflow is
ignored and the result is simply the low 64-bits of the result. ADDI 1;,1J ,0is
used to implement the MV 1;, 1J assembler pseudoinstruction.

SLTI Set less than immediate. Places the value 1 in register I ; if register 1J is less
than the sign extended immediate when both are treated as signed numbers,
else 0 is written to I ;.

SLTIU Compares the values as unsigned numbers (i.e., the immediate is first sign-
extended to 64-bits then treated as an unsigned number). Note: SLTIU 1;,
1J ,1sets1;tolif 1J equals zero, otherwise sets I; to O (assembler
pseudo instruction SEQZ I;, 1J).

XORI Bitwise XOR on register 1J and the sign-extended 12-bit immediate and place
the resultin I;.

ORI Bitwise OR on register 1J and the sign-extended 12-bit immediate and place
the resultin 1;.

ANDI Bitwise AND on register 1J and the sign-extended 12-bit immediate and place
the resultin 1;.

SLLI Shift Left Logical. The operand to be shifted is in 1J , and the shift amount is
encoded in the lower 5 bits of the I-immediate field.

SRLI Shift Right Logical. The operand to be shifted is in 1J , and the shift amount is
encoded in the lower 5 bits of the I-immediate field.

SRAI Shift Right Arithmetic. The operand to be shifted is in 1J , and the shift amount

is encoded in the lower 5 bits of the I-immediate field (the original sign bit is
copied into the vacated upper bits).

Shift-by-immediate instructions only use lower 5 bits of the immediate value for shift amount
(can only shift by 0-31 bit positions).
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Below is an example of an ADDI instruction.

116D D

0000000000000 2019 2 15114 1211 7 6 0
’ imm=-50 ‘ rsl=1 ‘ ADD ‘ rd=15 ‘ OP-Imm
1111110 011 1 00 OO 010 0O O0O 111 1 0 01 0 0 1 1

64A>2 ADDI Instruction Example

(E=2 '<.1 ;?(>A0f6<;?

For I-Type load instructions, a 12-bit signed immediate is added to the base address in register
rs1 to form the memory address. In Table 12 below, 3A;00 field encodes size and signedness
of load data.

e 3A;0 <=0<12 ; 20>A006< ;
imm[11:0] | rs1 | 000 rd | 00000011 | LB
imm[11:0] | rs1 | 001 rd | 00000011 | LH
imm[11:0] | rs1 | 010 rd | 00000011 | LW
imm[11:0] | rs1 | 100 rd | 00000011 | LBU
imm[11:0] | rs1 | 101 rd | 00000011 | LHU

(.72 I-Type Load Instructions

; 20>A0(6< ; 2?0>6=(6<;

LB1;,1J ,@DD Load Byte, loads 8 bits (1 byte) and sign-extends to fill destina-
tion 32-bit register.

LH1;,1J ,@bD Load Half-Word. Loads 16 bits (2 bytes) and sign-extends to fill
destination 32-bit register.

LW 1;, 1J , @bD Load Word, 32 bits.

LBU I;,1J , @DD Load Unsigned Byte (8-bit).

LHU 1;,1J , @D Load Unsigned Half-Word, which zero-extends 16 bits to fill des-
tination 32-bit register.

Below is an example of a LW instruction.

iICDh D

31' . . . . . . . . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
’ imm=+8 ‘ rsl=2 ‘ Lw ‘ rd=14 ‘ LOAD
o 0 0o 0o 00001 00 0 O O OT10O0 10 011100 O0O0 O0O0 1 1

64A>2 LW Instruction Example
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" (E=2 "(<>2 ;?0>A006<;?

Store instructions need to read two registers: 1J for base memory address and 1J for data to
be stored, as well as an immediate offset. The effective byte address is obtained by adding reg-
ister 1J to the sign-extended 12-bit offset. Note that stores don’t write a value to the register
file, as there is no 1; register used by the instruction. In RISC-V, the lower 5 bits of immediate
are moved to where the 1; field was in other instructions, and the 1J /1J fields are kept in
same place. The registers are kept always in the same place because a critical path for all oper-
ations includes fetching values from the registers. By always placing the read sources in the
same place, the register file can read the registers without hesitation. If the data ends up being
unnecessary (e.g. I-Type), it can be ignored.

31' . . . . '25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
’ ) ‘imr‘n[ll‘.:s]‘ ) ‘ ) ‘r52‘ ) ‘ ) ‘rsl‘ fynct‘3 ) im‘m[4‘:0] ) opcocje ‘
offset[11:5] src base width offset[4:0] STORE
64A>2 Store Instructions
bz = 3A;0 bz = <=0<12 ; 20>A006< ;
imm[11:5] | rs2 | rs1 | 000 imm[4:0] | 01000011 | SB
imm[11:5] | rs2 | rs1 | 001 imm[4:0] | 01000011 | SH
imm[11:5] | rs2 | rs1 | 010 imm[4:0] | 01000011 | SW
(.792 S-Type Store Instructions
; 20>A006< ; 2?20>6=(6<;

SB 1J , @DD3 4 13
SH 1J , @bD3 4 13
SWiJ ,

@DD3 4 1J

Store 8-bit value from the low bits of register 1J to memory.
Store 16-bit value from the low bits of register 1J to memory.
Store 32-bit value from the low bits of register 1J to memory.

Below is an example SW instruction.

?CD D

31 25 24
’ offset[11:5]
0 0 O

20 19 15 14 12 11 7 6 0
rs2=14 rsl=2 ‘ SwW offset[4:0] ‘

o o0 o o0 01110 0 O0O10WO010O01 00 O0O0OT1W0 0011

64A>2

SW Instruction Example

);0<;1686<;.9 Az=?

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a
signed offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the
jump instruction to form the jump target address. Jumps can therefore target a £1 MiB range.
JAL stores the address of the instruction following the jump (pc+4) into register 1;. The stan-
dard software calling convention uses 0 as the return address register and 0 as an alternate
link register.
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31 30' . . . '21 20 19' . . . . . '12 11' . . '7 6' . . '0
’iZO‘ ) ir‘nm[‘lo:l‘] ) ‘ill‘ ) injm[q.g:l?] ) ) rd ) opcoqe ‘
offset[20:1] dest JAL
64A>2 JAL Instruction

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then set-
ting the least-significant bit of the result to zero. The address of the instruction following the
jump (pc+4) is written to register rd. Register X0 can be used as the destination if the result is
not required.

31
] imml11:0]
offset[11:0]

20 19 15 14
funct3

0

JALR Instruction

12 11

rsl
base

rd
dest

opcode ‘
JALR

64A>2

Both JAL and JALR instructions will generate an instruction-address-misaligned exception if the
target address is not aligned to a four-byte boundary.

; 20>A006< ; 270>6=(6<;
JAL 1;, @DD3 4 Jump and link
JALR I;, 1J , @DD3 4 | Jump and link register
<;1606<;.9 >.;052?

All branch instructions use the B-Type instruction format. The 12-bit immediate represents val-
ues -4096 to +4094 in 2-byte increments. The offset is sign-extended and added to the address
of the branch instruction to give the target address. The conditional branch range is +4 KiB.

31 30' . . . '25 24' . . '20 19' . '15 14' '12 11' . '8 7 6' . . . . '0
lilz‘ ) ir‘nm[‘10:5‘] ) ‘ ‘rs2‘ ‘rsl‘ ‘ fynct‘3 ‘ imm[4:l] ‘ill‘ ) opcoqe ) ) ‘
offset[12,10:5] src2 srcl BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BGE[U] offset[11,4:1] BRANCH
64A>2 Branch Instructions
il 3A;0 il <=0<12 | ;?0>A0f6<;
imm[12,10:5] | rs2 | rs1 | 000 imm[4:1,11] | 110011 | BEQ
imm[12,10:5] | rs2 | rs1 | 001 imm[4:1,11] | 110011 | BNE

imm[12,10:5] | rs2 | rs1 | 100 imm[4:1,11] | 110011 | BLT
imm[12,10:5] | rs2 | rs1 | 101 imm[4:1,11] | 110011 | BGE
imm[12,10:5] | rs2 | rs1 | 110 imm[4:1,11] | 110011 | BLTU
imm[12,10:5] | rs2 | rs1 | 111 imm[4:1,11] | 110011 | BGEU
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; 20>A006<; 2?20>6=(06<;

BEQ 1J ,1J , Take the branch if registers 1J and 1J are equal.
@DD3 4

BNE 1J ,1J , Take the branch if registers 1J and 1J are unequal.
@DD3 4

BLT 1J , 1J , @DD3 4 | Take the branchif 1J islessthan 1J .

BGE1J ,1J , Take the branch if 1J is greater than or equal to 1J .
@DD3 4

BLTU1J , 17, Take the branch if 1J is less than 1J (unsigned).
@DD3 4

BGEU 1J , 1J , Take the branch if 1J is greater than or equal to 13
@DD3 4 (unsigned).

#<(2

Software should be optimized such that the sequential code path is the most common path,
with less-frequently taken code paths placed out of line. Software should also assume that
backward branches will be predicted taken and forward branches as not taken, at least the
first time they are encountered. Dynamic predictors should quickly learn any predictable
branch behavior.

- _?2 ;?0A006<; ?7?2 - /9E =?2A1< 6; ?20>A006< ;
BEQ 1J,0 , F==J<K 9<HQ 1J F==J<K Branch if = zero

)==2> - z216.02 ;?0>A006<;?

31' . . . . . . . . . . . . . . . . '12 11' . . . 7 6 . . . . . . 0
’ imm[31:12] ‘ rd ‘ opcode
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC
64A>2 Upper-Immediate Instructions

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI
places the U-immediate value in the top 20 bits of the destination register 1;, filling in the lowest
12 bits with zeros. Together with an ADDI to set low 12 bits, can create any 32-bit value in a reg-
ister using two instructions (LUI/ADDI).

For example:
DD D D =0 6
D D D D =0 6

AUIPC (add upper immediate to G:) is used to build pc-relative addresses and uses the U-type
format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with
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zeros, and adds this offset to the address of the AUIPC instruction, then places the result in reg-
ister 1;.

"2 - <E$212%6;4 $=2>_(6<;?

31 2827 26 25 2423 22212019 = 1514 12 11 = 7 6 = 0
’ ) fm ) ‘ PI ‘PO‘ PR‘PW‘ Sl ‘SO‘ SR‘SW‘ ) ‘rsl‘ ) ‘ fynct‘3 ‘ ) ) rd‘ ) L opcoqe )
FM predecessor successor 0 FENCE 0 MISC-MEM

64A>2 FENCE Instructions

The ' ( instruction is used to order device 1/O and memory accesses as viewed by other
RISC-V harts and external devices or coprocessors. Any combination of device input (I), device
output (O), memory reads (R), and memory writes (W) may be ordered with respect to any com-
bination of the same. These operations are discussed further in Section 5.11.

;B<;z2:;0 .9.;1 >2.8=<6;0?

,2,- "instructions are used to access system functionality that might require privileged access
and are encoded using the I-type instruction format. These can be divided into two main
classes: those that atomically read-modify-write control and status registers (CSRs), and all
other potentially privileged instructions.

#$% ;20>A006<;

0 _000O0O0oO0O0O0oO0O0O0O0oOO0O0oOO0O0o0oO00o2010 1514 1211 7 6 0
’ imm[11:0] rsl ‘ funct ‘ rd opcode
0 0 ADDI 0 OP-IMM

64A>2 NOP Instructions

The NOP instruction does not change any architecturally visible state, except for advancing the
pc and incrementing any applicable performance counters. NOP is encoded as D D

"t Dp2;76<; ""AY6=%0.06<; $=2>_0<;?

31v T T T T v25 24v T T v20 19v T T v15 14v v12 11v T T T 7 6 T T T T T T 0
funct?7 rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode
MULDIV multiplier multiplicand  MUL/MULH[[S]U] dest OP
MULDIV multiplier multiplicand MULW dest OP-32

§4A>2 Multiplication Operations
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; 20>A006< ;

2?20>6=(f< ;

MUL 1;,1J ,1J

Multiplication of 1J by 1J and places the lower 64-bits in the
destination register.

MULH 1;,13 , 13

Multiplication that return the upper 64-bits of the full 2x64-bit
product.

MULHU 1;,13 , 13

Unsigned multiplication that return the upper 64-bits of the full
2x64-bit product.

MULHSU 1,13 , 13

Signed rs1 multiple unsigned rs2 that return the upper 64-bits of
the full 2x64-bit product.

MULW I;,13 , 13

RV64 instruction that multiplies the lower 32 bits of the source
registers, placing the sign-extension of the lower 32 bits of the
result into the destination register.

Combining MUL and MULH together creates one multiplication operation.

6B6?6<; $=2>.06<;?

31 25 24 20 19 15 14 12 11 7 6 0
’ funct7 rs2 ‘ rsl funct3 ‘ rd opcode
MULDIV divisor dividend DIV[U]/REM[U] dest OoP
MULDIV divisor dividend DIV[U]JW/REM[U]W dest OP-32
64A>2 Division Operations
; 20>A006< ; 27?0>6=(6<;
DIVI;, 13 ,1] 64-bits by 64-bits signed division of 1 by 1J rounding towards
zero.

DIiVUI;,1J ,1J

64-bits by 64-bits unsigned division of 1
towards zero.

by 1J rounding

REM1;,1J3 ,13

Remainder of the corresponding division.

REMU I1;,1J ,1J

Unsigned remainder of the corresponding division.

DIVW 1,13 , 13

RV64 instruction. Signed divide the lower 32 bits of 1J by the
lower 32 bits of 1J .

DIVUW I1;, 13 ,1J

RV64 instruction. Unsigned divide the lower 32 bits of 1J by
the lower 32 bits of 1J .

REMW I;, 13 , 13

Singed remainder.

REMUW I;, 13 , 13

Unsigned remainder sign-extend the 32-bit result to 64 bits,
including on a divide by zero.

MULDIV 1;,1J , 1]

Multiply Divide.

Combining DIV and REM together creates on division operation.

45
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DI2;7?6<; (<z60 $=2>_(6<;?

Atomic operations are defined as operations that automatically read-modify-write memory to
support sychronization between multiple RISC-V harts running in the same memory space.

i<=60 1<.1 &2?2>B2 . ;1 "(<>2 <;16@6<;.9 ;?20>A006<;?

3 27262524 2019 = 1514 1211 = 7 6 0000000
’ funct5 aq| rl ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode

LR.W/D ordering 0 addr width dest AMO

SC.w/D ordering src addr width dest AMO

64A>2 Atomic Operations

; 20>A006< ; 2?20>6=(6<;
LR.W Load Reserve.

Loads a word from the address in 1J , places the sign-extended value in 13,
and registers a reservation set—a set of bytes that subsumes the bytes in the
addressed word.

SC.W Store Conditional

Conditionally writes a word in 1J to the address in 1J : the SC.W succeeds
only if the reservation is still valid and the reservation set contains the bytes
being written. If the SC.W succeeds, the instruction writes the word in 1J to
memory, and it writes zero to I ;. If the SC.W fails, the instruction does not
write to memory, and it writes a nonzero value to I ;. Executing an SC.W
instruction invalidates any reservation held by this hart.

LR.D RV64 - Loads doubleword.

SC.D RV64 - Stores doubleword.

For RV64, the sign-extended value of LR.W and SC.W is placed in 1;.

#<02

Only cores with data caches support the LR/SC instructions used by the A-Extension.
Cores with DTIMs will NOT.

0<z60 ""2:z<>E $=2>.06<;? ""$H?

The atomic memory operation (AMO) instructions perform read-modify-write operations for mul-
tiprocessor synchronization. These AMO instructions atomically load a data value from the
address in 1J , place the value into register 1;, apply a binary operator to the loaded value and
the original value in 1J , then store the result back to the address in 1J .
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31' . . '27 26 25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
’ funct5 ‘aq‘ rl ‘ rs2 ‘ rsl funct3 rd opcode ‘
AMOSWAP.W/D ordering src addr width dest AMO
AMOADD.W/D ordering src addr width dest AMO
AMOAND.W/D ordering src addr width dest AMO
AMOOR.W/D ordering src addr width dest AMO
AMOXOR.W/D ordering src addr width dest AMO
AMOMAX[U].W/Dordering src addr width dest AMO
AMOMIN[U].W/D ordering src addr width dest AMO

64A>2 Atomic Memory Operations

> 20>A006<; 2?20>6=(6<;
AMOSWAPW/D | Word / doubleword swap.
AMOADD.W/D Word / doubleword add.
AMOAND.W/D Word / doubleword and.
AMOOR.W/D Word / doubleword or.
AMOXOR.W/D Word / doubleword xor.
AMOMIN.W/D Word / doubleword minimum.
AMOMINU.W/D | Unsigned word / doubleword minimum.
AMOMAX.W/D Word / doubleword maximum.
AMOMAXU.W/D | Unsigned word / doubleword maximum.

For RV64, 32-bit AMOs always sign-extend the value placed in I ;.

DI2;26<; <6;492 %>20626<; 9<.(6;4 %<6;0
; 20>A006<; ?

The F Extension implements single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard. The F Extension adds 32 floating-point registers,

= —= , each 32 bits wide, and a floating-point control and status register =:J1. Floating-point
load and store instructions transfer floating-point values between registers and memory, and
instructions to transfer values to and from the integer register file are also provided.

I<.06;4 %<6;0 <;0><9.:;1 "0.0A? &2467202>?

Floating-Point Control and Status Register, =:J1, is a RISC-V control and status register (CSR).
The register selects the dynamic rounding mode for floating-point arithmetic operations and
holds the accrued exception flags.

31 . 8 7 5 4 3 2 1 0

l T T T T T T T Reserved - ‘ frm_ ‘ NV‘DZ‘ OF ‘ UF‘ NX‘

Rounding Mode (fflags)
Accrued Exceptions

64A>2 Floating-Point Control and Status Register
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9.4 "";2=-<;60 9.4 "°2.56;4
NV Invalid Operation
Dz Divide by Zero
OF Overflow
UF Underflow
NX Inexact

The =:J1 register can be read and written with the FRCSR and FSCSR instructions. The FRRM
instruction reads the Rounding Mode field =1D. FSRM swaps the value in =I1D with an integeter
register. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception Flags
field ==C8>J.

&<A;16;4 ""<12?

Floating-point operations use either a static rounding mode encoded in the instruction, or a
dynamic rounding mode held in =ID. A value of 111 in the instruction’s rm field selects the
dynamic rounding mode held in =ID. If =ID is set to an invalid value (101-111), any subsequent
attempt to execute a floating-point operation with a dynamic rounding mode will raise an illegal
instruction exception. Some instructions, including widening conversions, have the 1D field, but
are nevertheless unaffected by the rounding mode. Software should set their 1D field to RNE
(000).

SR | 2z<sio | 20504

000 RNE Round to Nearest, ties to Even.

001 RTZ Round towards Zero.

010 RDN Round Down (towards - ).

011 RUP Round Up (towards + ).

100 RMM Round to Nearest, ties to Max Magnitude.

101 Invalid. Reserved for future use.

110 Invalid. Reserved for future use.

111 DYN In instruction’s 1D field, selects dynamic rounding mode; In
Rounding Mode register, Invalid.

"6;492 %>20676<; 1<.1 .;1 "@<>2 ;?0>A006<;?

31 20 19 15 14 12 11 7 6 0
[ 7 immano " [ 7 1 [ width [ rd | " opcode
offset[11:0] base w dest LOAD-FP
§4A>2 Load Floating-Paint Instruction
31' . . . . '25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
imm[11:5] ‘ rs2 ‘ rsl ‘ width ‘ imm[4:0] ‘ opcode
offset[11:5] src base w offset[4:0] STORE-FP

64A>2 Store Floating-Point Instruction



Copyright © 2019-2020, SiFive Inc. All rights reserved. 49

> 20>A006< ; 27?0>6=(6<;
FLW 1;,1J , @DD Loads a single-precision floating-point value from memory into
floating-point register.
FSW @DD, 1J , 1J Stores a single-precision value from floating-point register rs2 to
memory.

"6;492 %>20676<; 9<.06;4 %<6;0 <z=A0.06<;.9 ;?0>A006<;?

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l ) fgnct? ) ‘ frpt ‘ ) ‘rsz‘ ) ‘ ) ‘rsl‘ ) ‘ rm. ‘ ) ) rd‘ ) ‘ L opcoqe )
FADD/FSUB S src2 srcl RM dest OP-FP
FMUL/FDIV S src2 srcl RM dest OP-FP
FSQRT S 0 src RM dest OP-FP
FMIN-MAX S src2 srcl MIN/MAX dest OP-FP
64A>2 Single-Precision Floating-Point Computation Instructions
; 20>A0(6< ; 2?20>6=(6<;
FADD.S Single-precision floating-point addition.
FMUL.S Single-precision floating-point multiplication.
FSUB.S Single-precision floating-point subtraction.
FDIV.S Single-precision floating-point division.
FSQRT.S Single-precision floating-point square root.
FMIN.S Single-precision floating-point minimum number.
FMAX.S Single-precision floating-point maximum number.
FMADD.S Single-precision floating-point multiply and add.
FMSUB.S Single-precision floating-point multiply and subtract.
FNMSUB.S Single-precision floating-point multiply and subtract.
FNMADD.S Single-precision floating-point multiply add and negate.

"6;492 %>206?6<; 9<.@6;4 %<6;0 <;B2>?6<; .;1 ""<B2 ;7?0>A0(6<;?

9<.06;4 %<6;0 <;B2>?6<; ;?0>A006<;?

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l ' f[mcté ' ‘ frﬁt ‘ ' 'rszv ' ‘ ' 'rslv ' ‘ 'rm' ‘ ' 'rd' ' ‘ T obcode T
FVimimt 3 ityatn g R dest Ob-Fb
64A>2 Single-Precision Floating-Point Conversion Instructions
; 20>A0(6< ; 2?20>6=(6<;
FCVTWS1;, 1] Convert floating point number to signed 32-bit integer.
FCVTL.SI;, 13 Convert floating point number to signed 64-bit integer.
FCVT.SW1;, 1J Converts 32-bit integer to floating point.
FCVT.S.L1;, 13 Converts 64-bit integer to floating point.
FCVT.WU.S I;, 1J Converts floating point to unsigned 32-bit integer.
FCVT.LU.S I;, 1] Converts floating point to unsigned 64-bit integer.
FCVT.SWU I;, 1J Converts unsigned 32-bit integer to floating point.
FCVT.S.LUI;, 13 Converts unsigned 64-bit integer to floating point.
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9<_@6:;4 %<6;00< 9<.06;4 %<6;0 "64; ;72006<; ;?0>A0M<;?

The floating-point to floating-point sign-injection instructions produce a result that takes all bits
except the sign bit from 13 . The sign-injection instructions provide floating-point MV, ABS and
NEG.

31' . . '27 26'25 24' . . '20 19' . . 15 14 '12 11 . . 7 6' . . . . '0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm ‘ rd ‘ opcode
FSGN] S src2 srcl JINJ/IX dest OP-FP
§4A>2 Floating-Point to Floating-Point Sign Injection Instructions
; 20>A0(6< ; 2?0>6=(6<;
FSGNJ.S1;,1J ,1J Produce a result that takes all bits except the sign bit from 13

the result’s sign bitis 1J sign bit.

FSGNJN.S1;,1J , 13 The result’s sign bit is the opposite of 13  sign bit.
FSGNJX.S1;,1J ,1J The sign bit is the XOR of the sign bits of 1J and 1J .
FSGNJ1;,1J3 ,1J Moves ry to rx.

FSGNJX 1;,1J ,1J Moves the negation of ry to rx.

9<_06;4 %<6;0 ""<B2 ;?0>A006<;?

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
TEMVXW S 0 TS 0 0 0 dest T oprp
FMV.W.X S 0 src 0O 0 O dest OP-FP
64A>2 Floating-Point Move Instructions
; 20>A0(6< ; 2?0>6=(6<;
FMV.X.W Moves the single-precision value in floating-point register 1J

represented in IEEE 754-2008 encoding to the lower 32 bits of
integer register 1;.

FMV.W.X Encoding from the lower 32 bits of integer register 1J to the
floating-point register 1;.

"6;492 %>20676<; 9<.06;4 %<6;0 <:z==.>2 ;7?0>A006<;?

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l ) fpnct;’: ) ‘ fmt ‘ ) ‘rs2‘ ) ‘ ) ‘rsl‘ ) ‘ m. ‘ ) ‘rd‘ ) ‘ L opcoqe )
FCMP S src2 srcl EQ/LT/LE dest OP-FP
§4A>2 Single-Precision Compare Instructions
; 20>A006< ; 2?20>6=(6<;
FEQ.S1;,1J ,1J Quiet comparison between floating-point registers.
FLT.S1;,13 ,13 Writing 1 to the integer register I; if 1J less then 1J . Performs

signaling comparisons. Set the invalid operation exception flag if
either input is NaN.

FLE.S1;,1J ,1J Writing 1 to the integer register I; if 1J less orequalto 1J .
Performs signaling comparisons. Set the invalid operation
exception flag if either input is NaN.
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"6;492 %>206?6<; 9<.06;4 %<6;0 9.7763E ;7?0>A0M6<;

31' . . '27 26'25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
TFCLASS S 0 T sc 0 0 1 dest T opFp
64A>2 Single-Precision Classify Instruction
; 20>A006< ; 27?0>6=(6<;
FCLASS.S1;,1J ,1J Examines the value in floating-point register 1J and writes to

integer. Here, I; is a 10-bit mask that indicates the class of the
floating-point number.

>1 /60 | ""2.:6:4

1J is-o

1J is negative normal number

1J is a negative subnormal number
1J is-0

1J is+0

1J is a positive subnormal number
1J is a positive normal number

1J is +o0

1J is a signaling NaN

1J is a quiet NaN

OO |IN|O|O|BA|WIN|[F|O

Di2;?6<; <A/92 %>206?6<; 9<.(6;4 %<6;0
; 20>A0(06< ; ?

The D extension widens the 32 floating-point registers, = —= , to 64 bits. The f registers can
now hold either 32-bit or 64-bit floating-point values. When multiple floating-point precisions are
supported, then valid values of narrower n-bit types, n < FLEN, are represented in the lower n
bits of an FLEN-bit. Any operation that writes a narrower result to an f register must write all 1s
to the uppermost FLEN-n bits to yield a legal NaN-boxed value. Floating-point n-bit transfer
operations move external values held in IEEE standard formats into and out of the f registers,
and comprise floating-point loads and stores and floating point move instructions.

<A/92 %>206?6<; 1<.1 .;1 "0i<>2 ;?0>A006<;?

31 20 19 15 14 12 11 7 6 0
l imm[11:0] ‘ rsl ‘ width ‘ rd ‘ opcode
offset[11:0] base D dest LOAD-FP
§4A>2 Double-Precision Load Instruction
31' . . . . '25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
imm[11:5] ‘ rs2 ‘ rsl ‘ width ‘ imm[4:0] ‘ opcode
offset[11:5] src base D offset[4:0] STORE-FP

64A>2 Double-Precision Store Instruction
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; 20>A006< ;

2?20>6=(f< ;

FLD I;, 1J , @DD

Loads a double-precision floating-point value from memory into
floating-point register 1;.

FSD @DD, 13 , 13

Stores a double-precision value from the floating-point registers
to memory.

FLD and FSD are only guaranteed to execute atomically if the effective address is naturally
aligned and XLEN=64. These instructions do not modify the bits being transfered; in particular,
the payloads of non-canonical NaNs are preserved.

<A/92 %>2076<;

9<.06;4 %<6;0 <z=A0.06<;.9 ;?0>A006<;?

The double-precision floating-point computational instructions are defined analogously to their
single-precision counterparts, but operate on double-precision operands and produce double

precision results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l ) fgnct? ) ‘ frpt ‘rsz‘ ) . sl ) m. ) ) rd‘ ) ‘ ) opcoqe )
FADD/FSUB D src2 srcl RM dest OP-FP
FMUL/FDIV D src2 srcl RM dest OP-FP
FMIN-MAX D src2 srcl MIN/MAX dest OP-FP
FSQRT D 0 src RM dest OP-FP
OP-FP
§4A>2 Double-Precision Computational Instructions
31 27 26 25 24 20 19 15 14 12 11 7 6 0
rs3 ‘ fmt rs2 ‘ rsl ‘ rm ‘ rd opcode
src3 D src2 srcl RM dest F[IN]JMADD/F[N]MSUB
64A>2 Double-Precision Fused Computational Instructions
> 20>A0(6< ; 2?0>6=(6<;
FADD.D Floating point addition.
FSUB.D Floating point subtraction.
FMUL.D Floating point multiplication.
FDIV.D Floating point division.
FMIN.D Floating point minimum.
FMAX.D Floating point maximum.
FSQRT.D Floating point square root.
FMADD.D Floating point multiply add.
FMSUB.D Floating point multiply subtract.

<A/92 %>20676<;

<A/92 %>207?6<;

0<.06;4 %<6;0 <;B2>?6<;

9<.06;4 %<6;0 <;B2>?6<; .:;1 ""<B2 ;?0>A0f(6<;?

; ?0>A006<;?

All floating-point to integer and integer to floating-point conversion instructions round according

to the 1D field.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
[ otwnets  Jeme | [ es2 [ 0 e [ m [ e ] opeode |
ABE b o e i = g
64A>2 Double-Precision Floating-Point to Integer and Integer to Floating-Point Conversion
Instructions
31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm rd ‘ opcode ‘
FOVTD.S 3 S g R dest Op-Fp
64A>2 Double-Precision to Single-Precision and Single-Precision to Double-Precsion
Floating-Point Conversion Instructions
; 20>A0(6< ; 27?0>6=(6<;
FCVT.W.D Converts a double-precision floating-point number in floating-
point register 1J to a signed 32-bit integer.
FCVT.L.D Converts a double-precision floating-point number in floating-
point register 1J to a signed 64-bit integer.
FCVT.D.W Converts a 32-bit signed integer, in integer register 1J into a
double-precision floating-point number in floating-point register
I;.
FCVT.D.L Converts a 64-bit signed integer,integer register 1J into a dou-
ble-precision floating-point number in floating-point register 1 ;.
FCVT.WU.D Converts double precision floating-point number to an unsigned
integer.
FCVT.LU.D Converts a double-precision floating-point number in floating-
point register 1J to a unsigned 64-bit integer.
FCVT.D.WU Converts a double-precision floating-point number in floating-
point register 1J to a unsigned 64-bit integer.
FCVT.D.LU Converts a 32-bit unsigned integer, in integer register 1J into a
double-precision floating-point number in floating-point register
I;.

In RV64, FCVT.W[U].D sign-extends the 32-bit result.

FCVT.D.W[U] always produces an exact result and is unaffected by rounding mode.

<A/92 %>20676<; 9<.06;4 %<6;00< 9<.06;4 %<6;0 "64; ;72086<; ;?0>A006<;?

31' . . '27 26'25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm rd ‘ opcode ‘
FSGN] D src2 srcl JINJIX dest OP-FP

64A>2 Double-Precision Floating-Point to Floating-Point Sign-Injection Instructions
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> 20>A006< ; 27?0>6=(6<;
FSGNJ.D Produce a result that takes all bits except the sign bit from 13
the result’s sign bit is "rs2’s sign bit.
FSGNJIN.D The result’s sign bit is the opposite of "rs2’s sign bit.
FSGNJX.D The sign bit is the XOR of the sign bits of 13 and 1J .

<A/92 %>20676<; 9<.06;4 %<6;0 ""<B2 ;?0>A006<;?

The RV64 architecture provides instructions to move bit patters between the floating-point and
integer registers.

31' . . '27 26'25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm ‘ rd ‘ opcode ‘
FMV.X.D D 0 src 0 0 O dest OP-FP
FMV.D.X D 0 src 0O 0 O dest OP-FP
64A>2 Double-Precision Floating-Point Move Instructions
; 20>A006< ; 270>6=(6<;

FMV.X.D moves the double-precision value in floating-point register rsl to
a representation in IEEE 754-2008 standard encoding in integer
register rd

FMV.D.X moves the double-precision value encoded in IEEE 754-2008
standard encoding from the integer register rs1 to the floating-
point register rd

FMV.X>D and FMV.D.X do not modify the bits being trnasferred; in particular, the payloads of
non-canonical NaNs are preserved.

<A/92 %>20676<; 9<_6;4 %<6;0 <z=.>2 ;?20>A00<;?

31' . . '27 26'25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm ‘ rd ‘ opcode
FCMP D src2 srcl EQ/LT/LE dest OP-FP
64A>2 Double-Precision Floating-Point Compare Instructions
; 20>A0(6< ; 2?20>6=(6<;
FEQ.D Quiet comparison between floating-point registers.
FLT.D Writing 1 to the integer register I; if 1J less then 1J . Performs

signaling comparisons. Set the invalid operation exception flag if
either input is NaN.

FLE.D Writing 1 to the integer register I; if 1J less or equal to 1J .
Performs signaling comparisons. Set the invalid operation
exception flag if either input is NaN.
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<A/92 %>20676<; 9<_{6;4 %<6;0 9.7763E ;?0>A006<;

31' . . '27 26'25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0
l . funct5 ‘ fmt ‘ rs2. ) ‘ . s ) m. ) rd. ) ‘ . opcode
FCLASS D 0 src 0 0 1 dest OP-FP
§4A>2 Double-Precision Floating-Point Classify Instruction
; 20>A006< ; 2?0>6=(6<;
FCLASS.D Examines the value in floating-point register 1J and writes to

integer register 1; a 10-bit mask that indicates the class of the
floating-point number.

Di2;?26<; <z=>27?721 ;7?20>A006<;7?

The C Extension reduces static and dynamic code size by adding short 16-bit instruction encod-
ings for common operations. The C extension can be added to any of the base ISAs (RV32,
RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%—60%
of the RISC-V instructions in a program can be replaced with RVC instructions, resulting in a
25%-30% code-size reduction. The C extension is compatible with all other standard instruction
extensions. The C extension allows 16-bit instructions to be freely intermixed with 32-bit instruc-
tions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition
of the C extension, no instructions can raise instruction-address-misaligned exceptions. It is
important to note that the C extension is not designed to be a stand-alone ISA, and is meant to
be used alongside a base ISA. The compressed 16-bit instruction format is designed around the
assumption that O is the return address register and O is the stack pointer.

<I=>27721 /60 ;?20A00<; <>z .07
15 . . . 12 11 . . . . 7 6 . . . . 2 1 . 0
funct4 ‘ ) _rd/rs1 ) ‘ ) L rs2 ) op
64A>2 CR Format - Register
15 13 12 11 7 6 2 1 0
) funct3 ) ‘ imm ‘ ) ) rd/rs1 ) ) ‘ ) ) imm ) ) op
§4A>2 ClI Format - Immediate
15 13 12 7 6 2 1 0
) funct3 ) ‘ ir’qm ) ) ‘ ) ) rs2 ) ) op

15

13

12

64A>2 CSS Format - Stack-relative Store

5 4 2 1 0

funct3

imm ) ‘ d” op

15

13

12

64A>2 CIW Format - Wide Immediate

funct3

15

13

12

64A>2 CL Format - Load

10 9 7 6 5 4 2 10

funct3

imm ' ‘ rsl’ ‘ imm ‘ rs2’ op
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64A>2 CS Format - Store

15 . . . . . 10 9 . . 7 6 . 5 4 . . 2 1 . 0
functé ) ‘ rd’/rsl” ‘ funct2 ‘ o rs2” op

64A>2 CA Format - Arithmetic

15 . . 13 12 . . 10 9 . . 7 6 . . . . 2 1 . 0
funct3 _ offset ‘ ) rsl’ ) ‘ ‘offset“ ) op

64A>2 CJ Format - Jump

"0.08 %<6;021 .?21 '<.1? .;1 "(<>2?

The compressed load instructions are expressed in Cl format.

15 13 12 11 7 6 2 1 0
l funct3 ‘ imm ‘ rd ‘ imm op
C.LWsP offset[5] dest!=0 offset[4:2|7:6] Cc2
C.LDSP offset[5] dest!=0 offset[4:3]|8:6] Cc2
C.LQSP offset[5] dest!=0 offset[4£9:6] C2
C.FLWSP offset[5] dest offset[4:2]7:6] C2
C.FLDSP offset[5] dest offset[4:3]8:6] Cc2

64A>2 Stack-Pointed-Based Loads

; 20>A0(6< ; 2?20>6=(6<;

C.LWSP Loads a 32-bit value from memory into register 1 ;.

C.LDSP RV64C Instruction which loads a 64-bit value from memory into
register 1;.

C.LQSP RV128C loads a 128-bit value from memory into register 1;.

C.FLWSP RV32FC Instruction that loads a single-precision floating-point
value from memory into floating-point register 1 ;.

C.FLDSP RV32DC/RV64DC Instruction that loads a double-precision
floating-point value from memory into floating-point register I ;.

The compressed store instructions are expressed in CSS format.

15 13 12 7 6 2 1 0
l ) funct3 ) ‘ ) ) imm ) ) ‘ ) ) rs2 ) ) op
C.SWSP offset[5:2]7:6] src C2
C.SDSP offset[5:3(8:6] src Cc2
C.SQSP offset[5:4(9:6] src C2
C.FSWSP offset[5:2(7:6] src C2
C.FSDSP offset[5:3(8:6] src Cc2

64A>2 Stack-Pointed-Based Stores
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> 20>A006< ; 27?0>6=(6<;
C.LWSP Loads a 32-bit value from memory into register I ;.
C.SWSP Stores a 32-bit value in register 13 to memory.
C.SDSP RV64C/RV128C instruction that stores a 64-bit value in register
1J to memory.
C.SQSP RV128C instruction that stores a 128-bit value in register 1J to
memory.
C.FSWSP RV32FC instruction that stores a single-precision floating-point
value in floating-point register 1J to memory.
C.FSDSP RV32DC/RV64DC instruction that stores a double-precision
floating-point value in floating-point register 13 to memory.
&246?202> .?21 1<.1? .;1 "(i<>2?
The compressed register-based load instructions are expressed in CL format.
15 13 12 10 9 7 6 5 4 2 1 0
l funct3 ‘ _imm ‘ _rsl” ‘ imm ‘ _rd” ‘ op
cib Sfisctiaia] base ofactize] Gect &0
8 perie e o oo %
C.FLD offset[5:3] base offset[7:6] dest Co
64A>2 Register-Based Loads
; 20>A0(6< ; 2?20>6=(6<;
C.LW Loads a 32-bit value from memory into register rd.
C.LD RV64C/RV128C-only instruction that loads a 64-bit value from
memory into register 1;.
C.LQ RV128C-only instruction that loads a 128-bit value from memory
into register 1;.
C.FLW RV32FC-only instruction that loads a single-precision floating-
point value from memory into floating-point register I ;.
C.FLD RV32DC/RV64DC-only instruction that loads a double-precision
floating-point value from memory into floating-point register I ;.

The compressed register-based store instructions are expressed in CS format.

15 13 12 10 9 7 6 5 4 2 1 0
l ‘funct3‘ ‘ ) imm ) ‘ ) rsl’ ) ‘ ir’qm ‘ ) rs2’ ) ‘ op
C.SW offset[5:3] base offset[2|6] src Co
C.SD offset[5:3] base offset[7:6] src Co
C.SQ offset[5é4£8] base offset[7:6] src Co
C.FSW offset[5:3] base offset[2|6] src Co
C.FSD offset[5:3] base offset[7:6] src Cco
64A>2 Register-Based Stores
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> 20>A006< ; 27?0>6=(6<;

C.sw Stores a 32-bit value in register 1J to memory.

C.SD RV64C/RV128C instruction that stores a 64-bit value in register
1J to memory.

C.SQ RV128C instruction that stores a 128-bit value in register 1J to
memory.

C.FsSw RV32FC instruction that stores a single-precision floating-point
value in floating point register 1J to memory.

C.FSD RV32DC/RV64DC instruction that stores a double-precision
floating-point value in floating-point register 13 to memory.

<;0><9 . ;732> ;?20>A006<;?

RVC provides unconditional jump instructions and conditional branch instructions.

The unconditional jump instructions are expressed in CJ format.

15 13 12 2 1 0

l funct3 ‘ imm op

CJ offset[11|4]9:8]10|6|7|3:1|5] Cl

C.JAL offset[ll|4|9:8 10|6|7|3:1 5] C1

§4A>2 Unconditional Jump Instructions
; 20>A0(6< ; 2?20>6=(6< ;
C.J Unconditional control transfer.

C.JAL RV32C instruction that performs the same operation as C.J, but

additionally writes the address of the instruction following the
jump (pc+2) to the link register, 0 .

The unconditional control transfer instructions are expressed in CR format.

15 12 11 7 6 2 1 0
l ) fuqct4 ) ‘ ) ) rsl ) ) ‘ ) ) rs2 ) ) ‘ op
C.JR src!'=0 0 C2
CJR src!=0 0 C2
64A>2 Unconditional Control Transfer Instructions
> 20>A006< ; 27?0>6=(6<;
C.JR Performs an unconditional control transfer to the address in reg-
ister 1J .
C.JALR Performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link
register, O .

The conditional control transfer instructions are expressed in CB format.
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15 . . 13 12 . . 10 9 . . 7 6 . . . . 2 1 . 0
l funct3 ‘ _imm ‘ ) rsl’ ) ‘ ) _imm ) ‘ op ‘
C.BEQZ offset[8]4:3] src offset[7:6|2:1 5] Cl
C.BNEZ offset[8]4:3] src offset[7:6(2:1|5] Cl
64A>2 Conditional Control Transfer Instructions
5 20>A006< ; 2?20>6=(6<;
C.BEQZ Conditional control transfers. Takes the branch if the value in
register 1J [ is zero.
C.BNEZ Conditional control transfers. Takes the branch if 1J [ contains
a nonzero value.

;0242> <z =A0.06<;.9 ;?0>A006<;?

;0242> <;7?0.;0 2;2>.06<; ;?0>A006<;?

15 13 12 11 7 6 2 1 0

l funct3 ‘imm[S]‘ rd ‘ imm op

C.LI imm[5] dest '=0 imm[4:0] Cl

ClL.LUI nzimm([17] dest !'= {0,2} imm[16:12] Cl

64A>2 Constant Generation Instructions
; 20>A006< ; 2?0>6=(6<;

C.Ll Loads the sign-extended 6-bit immediate, @DD, into register I ;.
C.LUI Loads the non-zero 6-bit immediate field into bits 17-12 of the

destination register, clears the bottom 12 bits, and sign-extends
bit 17 into all higher bits of the destination

;0242> &246242> - -216.02 $=2>_f6<;?

15 13 12 11 7 6 2 1 0
| funct3 [immis]] ‘ rdirsl ‘ ‘ imm(4:0] ‘ op
C.ADDI nzimm[5] dest !=0 nzimm[4:0] Cl
C.ADDIW imm[5] dest !=0 imm[4:0] Cl
C.ADDI16SP nzimm[9] 2 nzimm([4]6|8:7|5] Cl
; 20>A006< ; 2?20>6=(f< ;
C.ADDI Adds the non-zero sign-extended 6-bit immediate to the value in
register rd then writes the resultto 1 ;.
C.ADDIW RV64C/RV128C instruction that performs the same computation
but produces a 32-bit result, then sign-extends result to 64 bits.
C.ADDI16SP Adds the non-zero sign-extended 6-bit immediate to the value in
the stack pointer (JG=x2), where the immediate is scaled to rep-
resent multiples of 16 in the range (-512,496). C.ADDI16SP is
used to adjust the stack pointer in procedure prologues and epi-
logues.
15 . . 13 12 . . . . . . . 5 4 . . 2 1 . 0
funct3 ‘ imm rd’ op

C.ADDI4SPN nzuimm[5:4(9:6|2|3] dest Cco
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; 20>A000< ; 2?0>6=(6<;
C.ADDI4SPN Adds a zero-extended non-zero immediate, scaled by 4, to the
stack pointer, 0 , and writes the result to 1;'.
15 13 12 11 7 6 2 1 0
l ) funct3 ) %hamt[Sh ) rd/rsl ) ) ) shamt[4:9] ) op
C.SLLI shamt[5] dest !=0 shamt[4:0] C2
; 20>A000< ; 2?0>6=(6<;
C.SLLI Performs a logical left shift of the value in register 1; then writes
the result to I ;. The shift amount is encoded in the J?8DK field.
15 . . 13 12 11 . 10 9 . . 7 6 . . . . 2 1 . 0
l funct3 lshamt[Sh funct2 ‘ rd’/rs1” shamt[4:0] op
C.SRLI shamt[5] C.SRLI dest shamt[4:0] Cl
C.SRAI shamt[5] C.SRAI dest shamt[4:0] Cl
;3 20>A006< ; 2?20>0=(f< ;
C.SRLI Logical right shift of the value in register I;' then writes the
result to 1;'. The shift amount is encoded in the J?8DK field.
C.SRAI Arithmetic right shift of the value in register 1;' then writes the
result to 1;'. The shift amount is encoded in the J?8DK field.
15 13 12 11 10 9 7 6 2 1 0
l funct3 ‘imm[S]‘ funct2 ‘ rd’/rs1” imm[4:0] op
C.ANDI imm[5] C.ANDI dest imm[4:0] Cl
; 20>A000< ; 2?0>6=(6<;
C.ANDI Computes the bitwise AND of the value in register 1;' and the

sign-extended 6-bit immediate, then writes the resultto 1;'.

;0242> &246?202> &246?02> $=2>.06<;?

15 . . . 12 11 . . . . 7 6 . . . . 2 1 . 0
l ) funct3 ) ‘ _rd/rs1 ) ) L rs2 ) op
C.MV dest!=0 src!=0 C2
C.ADD dest !=0 src!=0 Cc2
; 20>A006< ; 2?20>6=(6<;
C.MV Copies the value in register 1J into register I ;.
C.ADD Adds the values in registers 1; and 1J and writes the result to
register rd.
15 10 9 7 6 5 4 2 1 0
funct6 ‘ rd’/rs1’ funct2 rs2’ op
C.AND dest C.AND src Cl
C.OR dest C.OR src Cl
C.XOR dest C.XOR src Cl
C.SUB dest C.SUB src C1l
C.ADDW dest C.ADDW src Cl
C.SuUBwW C.SUBW
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> 20>A006< ; 27?0>6=(6<;
C.AND Computes the bitwise AND of the values in registers 1;' and
1J .
C.OR Computes the bitwise OR of the values in registers 1;'and 1J .
C.XOR Computes the bitwise XOR of the values in registers I;'and 1 .
C.SUB Subtracts the value in register 13 ' from the value in register 1;'.
C.ADDW RV64C/RV128C-only instruction that adds the values in regis-

ters 1;"and 1J ', then sign-extends the lower 32 bits of the sum
before writing the result to register 1 ;.

C.SsuBw RV64C/RV128C-only instruction that subtracts the value in reg-
ister 1J ' from the value in register I;', then sign-extends the
lower 32 bits of the difference before writing the result to register
I;.

236;21 %924.9 ;?20>A006<;
A 16-bit intruction with all bits zero is permanently reserved as an illegal instruction.

15 13 12 11 7 6 2 1 0
. .o lol o [ 0 o o ] o
0 0 0 0 0
64A>2 Defined lllegal Instruction

-60?> Di2;7?6<; <;0><9.:1 "0.0A? &246?02>
; 20>A0(06< ; ?

RISC-V defines a separate address space of 4096 Control and Status registers associated with
each hart. The defined instructions access counter, timers and floating point status registers.

31 20 19 15 14 12 11 7 6 0
l csr l rsl l funct3 l rd l opcode ‘
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest uimm([4:0] CSRRWI dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source/dest uimm[4:0] CSRRCI dest SYSTEM

64A>2 Zicsr Instructions
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; 20>A006< ; 2?20>6=(6< ;
CSRRW I;, 13 :JI Instruction atomically swaps values in the CSRs and integer reg-
isters.
CSRRS I, 13 :J1 Instruction reads the value of the CSR, zeroextends the value to

64-bits, and writes it to integer register rd. The initial value in
integer register 1J is treated as a bit mask that specifies bit
positions to be set in the CSR.

CSRRC 1,13 :J1 Instruction reads the value of the CSR, zeroextends the value to
64-bits, and writes it to integer register rd. The initial value in
integer register 1J is treated as a bit mask that specifies bit
positions to be cleared in the CSR.

CSRRWI I;, 13 :J1 Update the CSR using an 64-bit value obtained by zero-extend-
ing a 5-bit unsigned immediate (uimm[4:0]) field encoded in the
rsl field instead of a value from an integer register.

CSRRSI 15,13 :J1 Update the CSR using an 64-bit value obtained by zero-extend-
ing a 5-bit unsigned immediate (uimm[4:0]) field encoded in the
rsl field instead of a value from an integer register.

CSRRCI 1,13 :J1 If the uimm[4:0] field is zero, then these instructions will not write
to the CSR.

The CSRRWI, CSRRSI, and CSRRCI instructions are similar in kind to CSRRW, CSRRS, and
CSRRC respectively, except in that they update the CSR using an 64-bit value obtained by
zero-extending a 5-bit unsigned immediate (uimm[4:0]) field encoded in the rs1 field instead of a
value from an integer register. For CSRRSI and CSRRCI, these instructions will not write to the
CSR if the uimm([4:0] field is zero, and they shall not cause any of the size effecs that might oth-
erwise occur on a CSR write. For CSRRWI, if 1; =0 , then the instruction shall not read the
CSR and shall not cause any of the side effects that might occur on a CSR read. Both CSRRSI
and CSRRCI will always read the CSR and cause any read side effects regardless of the 1; and

1J fields.

Table 14 shows if a CSR reads or writes given a particular CSR.

&246202> $=2>.;1
; 200A006<; | >1 >7? 2.1 & Cf2 "&
CSRRW 0 - no yes
CSRRW 0 - yes yes
CSRRS/C - 0 yes no
CSRRS/C - 0 yes yes
2 2216.02 $=2>.;1
;?200A00<; | >1 | A6z z [>2.1 & Cf2 &
CSRRWI 0 - no yes
CSRRWI 0 - yes yes
CSRRS/CI - 0 yes no
CSRRS/CI - 10 yes yes

(.72 CSR Reads and Writes
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<;0><9 ;1 "0.0A? &246742>?

The control and status registers (CSRs) are only accessible using variations of the CSRR
(Read) and CSRRW (Write) instructions. Only the CPU executing the csr instruction can read or
write these registers, and they are not visible by software outside of the core they reside on. The
standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
Attempts to access a hon-existent CSR raise an illegal instruction exception. Attempts to access
a CSR without appropriate privilege level or to write a read-only register also raise illegal
instruction. A read/write register might also contain some bits that are read-only, in which case
writes to the read-only bits are ignored. Each core functionality has its own control and status
registers which are described in the corresponding section.

23%;21 “&?

The following tables describe the currently defined CSRs, categorized by privilege level. The
usage of the CSRs below is implementation specific. CSRs are only accessbile when operating
within a specific access mode (user mode, machine mode, and Debug mode). Therefore,
attempts to access a non-existent CSR raise an illegal instruction exception, and attempts to
access a CSR without appropriate privilege level or to write a read-only register also raise illegal
instruction exceptions. A read/write register might also contain some bits that are read-only, in
which casewrites to the read-only bits are ignored.
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#Az /2> | %oiBw242 | #.:z2 | 220>6=6<;
)?2> (.= "20A=
0 RW LJIK8KLJ User status register.
0 RwW L@< User interrupt-enable register.
0 RW LKM<: User trap handler base address.
)?2> (.= .;1%;4
0 RwW LJ:18K:? Scratch register for use trap handlers.
0 RW L<G: User exception program counter.
0 RW L:8LJ< User trap cause.
0 RW L98;8;;1 User bad address.
0 RW L@G User interrupt pending.
)?2> 9<_[6;4 %<6;0 "&?
0 RW ==C8>J Floating-Point Accrued Exceptions.
0 RW =1D Floating-Point Dynamic Rounding Mode.
0 RwW =:JI Floating-Point Control and Status Register (=1D +
==C8>J).
)?2> <A;02> (6= 2>?
0 RO :P:C< Cycle counter for RDCYCLE instruction.
0 RO K@D< Timer for RDTIME instruction.
0 RO @EJIKI<K Instructions-retired counter for RDINSTRET
instruction.
0 RO ?GD:FLEK<I Performance-monitoring counter.
0 RO ?GD:FLEK<I Performance-monitoring counter.
o 1! RO ?GD:FLEK<I Performance-monitoring counter.
0 RO :P:C<? Upper 32 bits of :P:C<, RV32l only.
0 RO K@b<? Upper 32 bits of K@b<, RV32I only.
0 RO @EJIKI<K? Upper 32 bits of @EIKI<K, RV32I only.
0 RO ?GD:FLEK<I1 ? | Upper 32bits of ?GD:FLEK<I , RV32I only.
0 RO ?GD:FLEK<I ? | Upper 32bits of 2GD:FLEK<I , RV32l only.
o 1! RO ?GD:FLEK<I ? | Upper 32bits of ?GD:FLEK<I , RV32| only.

(/%2

User Mode CSRs
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#AZ/2> | wiBw242 [ #.:2 | 220%6=fk<;
"A=2>B6?<> (b= "20A=
0 RwW JJK8KLJ | Supervisor status register.
0 RW J<;<C<> | Supervisor exception delegation register.
0 RwW J@;<C<> | Supervisor interrupt delegation register.
0 RW Ja< Supervisor interrupt-enable register.
0 RwW JKM<: Supervisor trap handler base address.
"A=2>Bi?<> (.= _;1%;4

0 RW JJ:18K:? | Scratch register for supervisor trap handlers.
0 RW J<G: Supervisor exception program counter.
0 RW J:8LJ< Supervisor trap cause.
0 RwW J98;8; ;1 | Supervisor bad address.
0 RW J@G Supervisor interrupt pending.

" A=2>B6?7<> %><([2006<; . ;1 (. ;?9.06<;
0 RW | J6kal | Page-table base register.

(/%2

Supervisor Mode CSRs
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#AZ /2> | %iBw242 | #.:z2 | 220>6=g6<;
"T_056;2 ;3<>:c .{6<; &2467(2>?
o]} RO DM<E;FIQ@; Vendor ID.
0! RO D81:?0; Architecture ID.
o] RO D@DGA; Implementation ID.
o! RO D?81K@; Hardware thread ID.
"".056;2 (.= "20A=
0 RW DJK8KLJ Machine status register.
0 RW D@J8 ISA and extensions.
0 RW D<;<C<> Machine exception delegation register.
0 RW D@ ;<C<> Machine interrupt delegation register.
0 RW D@< Machine interrupt-enable register.
0 RW DKM<: Machine trap-hanlder base address.
".056;2 C.= .;1%;4
0 RW DJ:18K:? Scratch register for machine trap handlers.
0 RW D<G: Machine exception program counter.
0 RW D:8LJ< Machine trap cause.
0 RW D98;8; ;1 Machine bad address.
0 RW D@G Machine interrupt pending.
" _056; 2 %><f2006<; . ;1 (. ;?29.06<;
0 RW D98J< Base register.
0 RW DOFLE; Bound register.
0 RW D@98J< Instruction base register.
0 RW D@9FLE; Instruction bound register.
0 RW D;98J< Data base register.
0 RW D;9FLE; Data bound register.
"".056;2 <A;i2> (6-2>7?
0 RW D:P:C< Machine cycle counter.
0 RW D@EJKI<K Machine instruction-retired counter.
0 RW D?GD:FLEK<I Machine performance-monitoring counter.
0 RW D?GD:FLEK<I Machine performance-monitoring counter.
o 1 RW D?GD:FLEK<I Machine performance-monitoring counter.
0 RW D:P:C<? Upper 32 bits of D:P:C<, RV32l only.
0 RW D@EJKI<K? Upper 32 bits of D@EJKI<K, RV32I only.
0 RW D?GD:FLEK<I ? | Upper 32 bits of D?GD:FLEK<I1 , RV32I only.
0 RW D?GD:FLEK<I ? | Upper 32 bits of D?GD:FLEK<I , RV32l only.
o 1! RW D?GD:FLEK<I ? | Upper 32 bits of D?GD:FLEK<1 , RV32I only.
2/A4 (>.02 &2467?(2> ?5.>21 Cii5 2/A4 ""<12
0 RW KJ<C<:K Debug/Trace trigger register select.
0 RW K;8K8 First Debug/Trace trigger data register.

(/%2

Machine Mode CSRs
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#HAZ /2> | %>6B242 | #.:2 2?20>6=(6<;
0 RW K;8K8 Second Debug/Trace trigger data register.
0 RW K;8K8 Third Debug/Trace trigger data register.

(.72 Machine Mode CSRs

#HAZ /2> | %>6B6242 | #.:-2 2?0>6=(6< ;
0 RW ;:J1 Debug control and status register.
0 RW ;G: Debug PC.
0 RW ;J:18K:? | Debug scratch register.

(./792 Debug Mode Registers

"& 002?77 $>12>6:;4

On a given hart, explicit and implicit CSR access are performed in program order with respect to
those instructions whose execution behavior is affected by the state of the accessed CSR. In
particular, a CSR access is performed after the execution of any prior instructions in program
order whose behavior modifies or is modified by the CSR state and before the execution of any
subsequent instructions in program order whose behavior modifies or is modified by the CSR
state.

Furthermore, a CSR read access instruction returns the accessed CSR state before the execu-
tion of the instruction, while a CSR write access instruction updates the accessed CSR state
after the execution of the instruction. Where the above program order does not hold, CSR
accesses are weakly ordered, and the local hart or other harts may observe the CSR accesses
in an order different from program order. In addition, CSR accesses are not ordered with respect
to explicit memory accesses, unless a CSR access modifies the execution behavior of the
instruction that performs the explicit memory access or unless a CSR access and an explicit
memory access are ordered by either the syntactic dependencies defined by the memory model
or the ordering requirements defined by the Memory-Ordering PMAs. To enforce ordering in all
other cases, software should execute a FENCE instruction between the relevant accesses. For
the purposes of the I ( instruction, CSR read accesses are classified as device input (1), and
CSR write accesses are classified as device output (O). For more about the FENCE instruc-
tions, see Section 5.11. For CSR accesses that cause side effects, the above ordering con-
straints apply to the order of the initiation of those side effects but does not necessarily apply to
the order of the completion of those side effects.

"6 6B2 & T 6* -=092:2;0.06<; *2>?6<; &246?(2>?

mvendorid

The value in DM<E;FI1@; is O , corresponding to SiFive’s JEDEC number.
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marchid

The value in D81 :?@; indicates the overall microarchitecture of the core and at SiFive we use
this to distinguish between core generators. The RISC-V standard convention separates
D81:?@; into open-source and proprietary namespaces using the most-significant bit (MSB) of
the D81:?@; register; where if the MSB is clear, the D81:7?@; is for an open-source core, and if
the MSB is set, then D81:?@; is a proprietary microarchitecture. The open-source namespace is
managed by the RISC-V Foundation and the proprietary namespace is managed by SiFive.

SiFive’s E3 and S5 cores are based on the open-source 3/5-Series microarchitecture, which
has a Foundation-allocated D81 :?@; of 1. Our other generators are numbered according to the
core series.

*_0A2 <2 2;2> (<
0 Z 7-Series Processor (E7, S7, U7 series)
(.792 Core Generator Encoding of D81:?@;

mimpid

The value in D@DG@; holds the release tag for the generator used to build this implementation.

&2.16;4 z=92:z2;0.00<; *2>?6<; &246?02>?

To read the DM<E;FI1@;, D81:?@; and D@DG@; registers, simply replace D@DG@; with DM<E;FI@;
or D81:?@; as needed.

L@EKGKIBGK D@DG@;
668JD66 MFC8K@C< :JlI D@DG@; I D@DG@;

; ??2:-/9%E:

JIl 8 D@D@G;

.72 <Azi2>? .;1 (6z27

RISC-V ISAs provide a set of up to 32x64-bit performance counters and timers that are accessi-
ble via unprivileged 64-bit read-only CSR registers 0 X 0 1. The first three of these
(CYCLE, TIME, and INSTRET) have dedicated functions; while the remaining counters, if imple-
mented, provide programmable event counting.

The S76 implements D:P:C<, DK@D<, and D@EJKI<K counters, which have dedicated functions:
cycle count, real-time clock, and instructions-retired, respectively. The timer functionality is
based on the DK@D< register. Additionally, the S76 implements event counters in the form of
D?GD:FLEK<I, which is used to monitor user requested events.
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31 T T T T T T T T T T T 20 19 T T T T 15 14 T T 12 11 T T T T 7 6 T T T T T T 0
l csr rsl funct3 ‘ rd opcode ‘
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM
RDINSTRET[H] 0 CSRRS dest SYSTEM

64A>2 Timers & Counters

; 20>A0(6< ; 2?0>6=(6<;

RDCYCLE 1, 13 , Reads the low 64-bits of the cycle CSR which holds a count of

:P:C< the number of clock cycles executed by the processor core on
which the hart is running from an arbitrary start time in the past.

RDTIME 1;, 1J , K@b< Reads the low 64-bits of the time CSR, which counts wall-clock
real time that has passed from an arbitrary start time in the past.

RDINSTRET 15,13 , reads the low 64-bits of the instret CSR, which counts the num-

@EJKI<K ber of instructions retired by this hart from some arbitrary start
point in the past.

RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions read the full 64 bits of the :P:C<,
K@D<, and @EJKI<K counters. The RDCYCLE pseudoinstruction reads the low 64-bits of the
cycle CSR (D:P:C<), which holds a count of the number of clock cycles executed by the proces-
sor core on which the hart is running from an arbitrary start time in the past. The RDTIME
pseudoinstruction reads the low 64-bits of the time CSR (DK@D<), which counts wall-clock real
time that has passed from an arbitrary start time in the past The RDINSTRET pseudoinstruction
reads the low 64-bits of the instret CSR (D@EJK1<K), which counts the number of instructions
retired by this hart from some arbitrary start point in the past The rate at which the cycle counter
advances is 1K:6:CF:B. To determine the current rate (cycles per second) of instruction execu-
tion, call the D<K8C6K@D<16><K6K@D<98J<6=I<HL<E:P API. The
D<K8C6K@D<16><K6K@D<98J<6=1<HL<E:P and additional APIs are described in Section 5.9.2
below.

HAZ/2> | %6B6I242 | #.:-2 2?20>6=f<;
0 RO :P:C< Cycle counter for RDCYCLE instruction
0 RO K@D< Timer for RDTIME instruction
0 RO @EJKI<K | Instruction-retired counter for RDINSTRET instruction

(62> &2462(2>

DK@D< is a 64-bit read-write register that contains the number of cycles counted from the
IK:6KF>>C< signal described in the S76 User Guide. On reset, DK@D< is cleared to zero.

G:-2> %

The APIs below are used for reading and manipulating the machine timer. Other APlIs are
described in more detail within the Freedom Metal documentation. https://sifive.github.io/free-
dom-metal-docs/
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A;0f6<;?
6;0 metal_timer_get_cyclecount 6;{ hartid A;?64;219<;49<;4 cyclecount
Read the machine cycle count.

&20A>;
0 upon success

%.>. = 2§2>?
e ?81K@;: The hart ID to read the cycle count of

e :P:C<:FLEK: The variable to hold the value

6;0 metal_timer_get_timebase_frequency 6;0 hartid A;?64;219<;49<;4 timebase
Get the machine timebase frequency.

&20A>;
0 upon success

%.>. = 202>?
* ?81K@;: The hart ID to read the cycle count of

e K@D<98J<: The variable to hold the value

6;0 metal_timer_set_tick 6;0 hartid 6;0 second
Set the machine timer tick interval in seconds.

&20A>;
0 upon success

%.>. = 2(2>?
* ?81K@;: The hart ID to read the cycle count of

e J<:FE;: The number of seconds to set the tick interval to

&2467?02> 692 )?.42 .;1 _%%;4 <;B2;06<;?

RV64GC has 32 0 registers that are each 64 bits wide.

70
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&2467202> #.:2 2?20>6=(6< ; " .B2>
0 Q<IF Hard-wired zero -
0 18 Return address Caller
0 JG Stack pointer Callee
0 >G Global pointer -
0 KG Thread pointer -
0 K Temporary / alternate link register Caller
0 K Temporaries Caller
0 J =G Saved-register / frame-ponter Callee
0 J Saved register Callee
0 8 Function arguments / return values | Caller
0 8 Function arguments Caller
0 J Saved registers Callee
0 K Temporaries Caller
9<.06;4 %<6;0 &2467202>?
= =K FP temporaries Caller
= =J FP saved registers Callee
=8 FP arguments / return values Caller
= =8 FP arguments Caller
= =8 FP saved registers Callee
= =K FP temporaries Caller

(.72 RISC-V Registers

The programmer counter PC hold the address of the current instruction.

18 - holds the return address for a call.
JG - stack pointer, points to the current routine stack.

=G J - frame pointer, points to the bottom of the top stack frame.

o O O O

>G - global pointer, points into the middle of the global data section.

The common definition is: .data + 0x800. RISC-V immediate values are 12-bit signed val-
ues, which is +/- 2048 in decimal or +/- 0 in hex. So that global pointer relative
accesses can reach their full extent, the global pointer point + 0 into the data section.
The linker can then relax LUI+LW, LUI+SW into gp-relative LW or SW. i.e. shorter instruction
sequences and access most global data using LW at gp +/- offset

LW t0 , 0x800(gp)
LW t1 , Ox7FF(gp)

« 0 KG - thread pointer, point to thread-local storage (TLS-mostly used in linux and RTOS).
If you create a variable in TLS, every thread has its own copy of the variable, i.e. changes to
the variable are local to the thread. This is a static area of memory that gets copied for each
thread in a program. It is also used to create libraries that have thread-safe functions,
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because of the fact that each call to a function has its copy of the same global data, so it's

safe.

&I

> ??2:-/%E

RISC-V instructions have opcodes and operands.

E.g. add x1, x2, x3

AR

#x1=x2+x3

72

Operation Destination  First operand Second operand Assembly comment
code (opcode) register register register character
§4A>2 RISC-V Assembly Example
??2:-/E 27?0>6=(6<;
8;; 0 0 O 8 9 a=0 , b=0 , c=0
JL9 0 O O ; < = d=0 , e=0 , f=0
8;; 0 0 O NOP Writes to O are always ignored
8; 0 0 O = > f=0 , g=0
8;;0 0 O = > f=0 , g=0
CN O 0 0 @EK 3 4 Reg 0 gets A[3]
8;; 0 0 0 > ? 34 g=0 ,h=0
CN O 0 0 @EK 3 4 Reg O gets A[3]
8;; 0 0 0 3 4 ? 34 h=0
JN O 0 0 Reg O gets h + A[3]
9E< O 0 ;FE< @= @ A f=0 ,g=0 ,h=0 ,i=0 ,j=0
8;0 O O = > ?
;FE<
9E< 0 0 <CJ< @= @ A f=0 ,g=0 ,h=0 ,i=0 ,j=0
8;0 O O = > ?
A ;FE< <CJ<
<CJ< JL9 O 0 0 = > ?
;FE<

?2?2:/92>(<"".056;2 <12

The following flowchart describes how the assembler converts the RISC-V assembly code to

machine code.
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foo.S

Y

‘ Assembler ’

\

foo.o

Linker

bar.S

Y

( Assembler ’

\

bar.o

Assembler source files
(text)

Assembler converts
human readable
assembly code to
instruction bit patterns

Machine code object
files

lib.o

Pre-built object file
libraries

a.out

64A>2

Machine code
executable file

RISC-V Assembly to Machine Code
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One RISC-V Instruction = 32 hits

J9%:4 . A;Of6<;  .%;4 <;B2;(6<;

Put parameters in place where function can access them.
Transfer control to function.

Acquire local resources needed for tunction.

Perform function task.

o s~ D Pe

Place result values where calling code can access and restore any registers might
have used.

6. Return control to original caller.

Caller-saved The function invoked can do whatever it likes with the registers. Callee-saved If a
function wants to use registers it needs to store and restore them.

Take, for example, the following function:

int leaf(int g, int h, int i, int j) {
int F;
f = (g+th) - (+i);
return f;

}

In this function above, arguments are passedin 8 ,8 ,8 and 8 . The return value is returned
in8 .
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addi sp, sp, -8 # adjust stack for 2 items

sw sl, 4(sp) # save 1 for use afterwards

sw s0, 0(sp) # save sO for use afterwards

add s0,a0,al #s0 =g + h

add sl,a2,a3 #sl =1+ j

sub a0,s0,sl # return value (g + h) - (i + j)
Iw sO, 0(sp) # restore register sO for caller
Iw s1, 4(sp) # restore register sl for caller
addi s1, 4(sp) # adjust stack to delete 2 items
jr ra # jump back to calling routine

In the assembly above, notice that the stack pointer was decremented by 8 to make room to
save the registers. Also, J and J are saved and will be stored at the end.

#27?021 A;006<;?

In the case of nested function calls, values held in 8 and 18 will be clobbered.

Take, for example, the following function:

int sumSquare(int x, int y) {
return mult(x,x) + y;

}

In the function above, a function called JLD,HL8I< is calling DLCK. To execute the function,
there’s a value in 18 that JLD,HL8I< wants to jump back to, but this value will be overwritten by
the call to DLCK.

To avoid this, the JLD,HL8I< return address must be saved before the call to DLCK. To save the
the return address of JLD,HL81<, the function can utilize stack memory. The user can use stack
memory to preserve automatic (local) variables that don't fit within the registers.

\/
\/

sp sp
Saved return

address (if needed)

Saved argument
registers (if any)

Saved saved
registers (if any)

Local variables (if
any)

\

sp

Before call During call After call
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64A>2 Stack Memory during Function Calls

Consider the assembly for JLD,HL8I< below:

sumSquare:

addi sp,sp,-8 # reserve space on stack
sw ra, 4(sp) # save return address
sw al, 0(sp) # save y

mv al,a0 # mult(x,x)

jal mult # call mult

lw al, 0(sp) # restore y

add a0,a0,al # multQ+y

lw ra, 4(sp) # get return address
addi sp,sp,8 # restore stack

mult: ...

T2 -<EPr12>6:4 H ; ?0>A006< ; ?

In the RISC-V ISA, each thread, referred to as a hart, observes its own memory operations as if
they executed sequentially in program order. RISC-V also has a relaxed memory model, which
requires explicit FENCE instructions to guarantee the ordering of memory operations.

The FENCE instructions include ' (¢ and! ( $.The ! ( instruction simply ensures that
the memory access instructions before the ' ( instruction get committed before the 1 (
instruction is committed. It does not guarantee that those memory access instructions have
actually completed. For example, a load instruction before a ' ( instruction can commit with-
out waiting for its value to come back from the memory system. ! (  $ functions the same as
1 ( ,aswell as flushes the instruction cache.

<>2D. =92 CH6i5<A0 FENCE 6; ?(>A006<; ?
Hart 1 executes:
Load X
Store Y
Store Z
Because of relaxed memory model, Hart 2 could see stores/loads arranged in any order:
Store Z
Load X

Store Y

+605 FENCE 6; ?0>A0(06< ; ?
Hart 1 executes:

Load X
Store Y
FENCE

Store Z
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Hart 2 sees:

Store Y
Load X
Store Z

With ' ( instructions, Hart 2 is forced to see the Load X and the Store Y prior to the Store Z,
but could arbitrarily see Store Y before Load X or Load X before Store Y. Functionally, ! (
instructions order the completion of older memory accesses prior to newer accesses. However,
unnecessary ! ( instructions slow processes and can hide bugs, so it is essential to identify
where and when FENCE should be used.

<< 9<C

This process is managed as part of the Freedom Metal source code. The freedom-metal boot
code supports single core boot or multi-core boot, and contains all the necessary initialization
code to enable every core in the system.

ENTRY POINT: File: =1<<;FD D<K8C JI: <EKIP ,, label: 6<EK<I.

Initialize global pointer >G register using the generated symbol 66>CF98C6GF@EK<I .
Write DKM<: register with <8 1CP6K18G6M<:KF1 as default exception handler.

Clear chicken bits (usage for this register is not made public).

Read D?81K@; into register 8 and call 6JK8IK, which exists in 1K .

We now transition to File: =I<<;FD D<K8C >CFJJ :1K ,, label: 6JKSIK.

N oo g~ w0 DNk

Initialize stack pointer, JG, with 6JG generated symbol. Harts with D?81K@; of one or
larger are offset by (6JG + 66JK8:B6J@Q< x D?81K@;). The 66JK8:B6J@Q< field is
generated in the linker file.

8. Check if D?81K@; == 66D<K8C69FFK6?81K and run the init code if they are equal. All
other harts skip init and go to the Post-Init Flow, step #15.

9. Boot Hart Init Flow begins here.
10. Init data section to destination in defined RAM space.
11. Copy ITIM section, if ITIM code exists, to destination.
12. Zero out 9J3J section.

13. Call 8K<0@K library function that registers the C@9: and =1<<;FD D<K8C destructors
to run after main returns.

14. Call the 66C@9:6@E@K681 18P library function, which runs all functions marked with
668KKI1@9LK<66 :FEJKIL:-KFI
a. For example, PLL, UART, L2 if they exist in the design. This method
provides full early initialization prior to entering the main application.

15. Post-Init Flow Begins Here.
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16. Call the C routine 66D<K8C6JPE : ?1FE@Q<6?81KJ, where hart 0 will release all harts
once their individual DJ@G bits are set. The DJ@G bit is typically used to assert a soft-
ware interrupt on individual harts, however interrupts are not yet enabled, so DJ@G in
this case is used as a gatekeeping mechanism.

17. Check D@J8 register to see if floating-point hardware is part of the design, and set
up DJIK8KLJ accordingly.

18. Single or multi-hart design redirection step.

a. If design is a single hart only, or a multi-hart design without a C-imple-
mented function J<:FE;81P6D8AE, ONLY the boot hart will continue to

D8@E

b. For multi-hart designs, all other CPUs will enter sleep via WFI instruc-
tion via the weak J<:FE;81P6D8@E label in 1K ,, while boot hart runs
the application program.

c. In a multi-hart design which includes a C-defined J<:FE;81P6D8@E func-
tion, all harts will enter J<:FE;81P6D8@E as the primary C function.

16;82> (92
The linker file generates important symbols that are used in the boot code. The linker file
options are found in the =1<<;FD < J;B 9JG path.

There are usually three different linker file options:

* D<K8C ;<=8LCK C;J — Use flash and RAM sections
* D<K8C 18DIF;8K8 C;J— Place read only data in RAM for better performance

e D<K8C J:18K:?G8; C;J — Places all code + data sections into available RAM location
Each linker option can be selected by specifying &$(%6- +" - on the command line.

For example:

make PROGRAM=hello TARGET=design-rtl CONFIGURATION=release LINK_TARGET=scratchpadsoft-
ware

The D<K8C ;<=8LCK C;J linker file is selected by default when &$(%6- +" - is not specified. If
there is a scenario where a custom linker is required, one of the supplied linker files can be
copied and renamed and used for the build. For example, if a new linker file named

D<K8C E<ND8G C;J was generated, this can be used at build time by specifying

&$(%6- +" - E<ND8G on the command line.
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16;82> 692 "Ez/<9?

The linker file generates symbols that are used by the startup code, so that software can use
these symbols to assign the stack pointer, initialize or copy certain RAM sections, and provide
the boot hart information. These symbols are made visible to software using the PROVIDE key-
word.

For example:

__stack_size = DEFINED(__stack_size) ? _ stack_size : 0x400;
PROVIDE(__stack _size = __ stack_size);

2;2>.021 16;82> "E - /<97

A description list of the generated linker symbols is shown below.

__metal boot_hart
This is an integer number to describe which hart runs the main init flow. The D?81K@; CSR
contains the integer value for each hart. For example, hart 0 has D?81K@; , hart 1 has
D?81K@; , and so on. An assembly example is shown below, where 8 already contains
the D?81K@; value.

/* IT we"re not hart 0, skip the initialization work */
la t0O, _ metal_boot_hart
bne a0, t0, _skip_init

An example on how to use this symbol in C code is shown below.

extern int _ _metal_boot_hart;
int boot_hart = (int)&__metal_boot_hart;

Additional linker file generated symbols, along with descriptions are shown below.

__metal_chicken_bit
Status bit to tell startup code to zero out the Feature Disable CSR. Details of this register
are internal use only.

__global_pointer$
Static value used to write the >G register at startup.

_sp
Address of the end of stack for hart 0, used to initialize the beginning of the stack since the
stack grows lower in memory. On a multi-hart system, the start address of the stack for
each hart is calculated using (6JG + 66JK8:B6J@Q< x D?81K@;)

metal_segment_bss_target_start
metal segment_bss_target_end
Used to zero out global data mapped to 9JJ section.

» Only 66D<K8C69FFK6?81K runs this code.
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metal_segment_data_source_start
metal_segment_data_target_start
metal segment_data_target_end

Used to copy data from image to its destination in RAM.

* Only 66D<K8C69FFK6?8IK runs this code.

metal segment_itim_source_start
metal_segment_itim_target_start
metal segment_itim_target_end
Code or data can be placed in itim sections using the
668KK1@9LK<66 J<:K@FE @K@D

« When this attribute is applied to code or data, the
D<K8C6J<>D<EK6@K@D6JIFLI :<6JK8I1K, D<K8C6JI<>D<EK6@K@D6K81><K6JKS8IK, and
D<K8C6J<>D<EK6@K@D6K81><K6<E; symbols get updated accordingly, and these sym-
bols allow the startup code to copy code and data into the ITIM area.

o Only 66D<K8C69FFK6?81K runs this code.

#H<(2

At the time of this writing, the boot flow does not support C++ projects

& " 6* <z=602> 9.47?

arch abi . ;1 mtune

RISC-V targets are described using three arguments:

1. D81:? $, :selects the architecture to target.
2. D89@ $: selects the ABI to target.

3. DKLE< ) ( " :selectsthe microarchitecture to target.

-march

This argument controls which instructions and registers are available for the compiler, as
defined by the RISC-V user-level ISA specification.

The RISC-V ISA with 32, 32-bit integer registers and the instructions for multiplication would be
denoted as RV32IM. Users can control the set of instructions that GCC uses when generating
assembly code by passing the lower-case ISA string to the -march GCC argument: for example
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7 D8I:? IM @D. On RISC-V systems that don’t support particular operations, emulation rou-
tines may be used to provide the missing functionality.

Example:

double dmul(double a, double b) {
return a * b;

}

will compile directly to a FP multiplication instruction when compiled with the D extension:
$ riscv64-unknown-elf-gcc test.c -march=rv64imafdc -mabi=Ip64d -o- -S -03
dmul:
fmul.d fa0,fa0,fal
ret

but will compile to an emulation routine without the D extension:

$ riscv64-unknown-elf-gcc test.c -march=rv64i -mabi=Ip64 -o- -S -03

dmul:
add sp,sp,-16
sd ra,8(sp)
call __muldf3
1d ra,8(sp)
add Sp,sp,16
jr ra

Similar emulation routines exist for the C intrinsics that are trivially implemented by the M and F
extensions.

-mabi

D89@ selects the ABI to target. This controls the calling convention (which arguments are
passed in which registers) and the layout of data in memory. The D89@ argument to GCC spec-
ifies both the integer and floating-point ABIs to which the generated code complies. Much like
how the D81 :? argument specifies which hardware generated code can run on, the D89@
argument specifies which software-generated code can link against. We use the standard nam-
ing scheme for integer ABIs (&CG or CG ), with an argumental single letter appended to
select the floating-point registers used by the ABI (CG  vs. @CG =Vvs. @CG ;). In order for
objects to be linked together, they must follow the same ABI.

RISC-V defines two integer ABIs and three floating-point ABIs.

e @CG :int, long, and pointers are all 32-bits long. long long is a 64-bit type, char is 8-bit, and
short is 16-bit.

* CG :long and pointers are 64-bits long, while int is a 32-bit type. The other types remain
the same as @CG

The floating-point ABIs are a RISC-V specific addition:
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nun

« " (the empty string): No floating-point arguments are passed in registers.

» =: 32-bit and smaller floating-point arguments are passed in registers. This ABI requires the
F extension, as without F there are no floating-point registers.

* ;:64-bit and smaller floating-point arguments are passed in registers. This ABI requires the
D extension.

arch/abi <=z /6;.(6<;?

e D8I:? IM @D8=;: D89@ @CG ;: Hardware floating-point instructions can be generated
and floating-point arguments are passed in registers. This is like the D=CF8K 89@ ?8I;
argument to ARM’s GCC.

e« D8I:? IM @D8: D89@ @CG : No floating-point instructions can be generated and no
floating-point arguments are passed in registers. This is like the D=CF8K 89@ JF=K argu-
ment to ARM’s GCC.

« D8I:? IM @D8=;: D89@ @CG : Hardware floating-point instructions can be generated,
but no floating-point arguments will be passed in registers. This is like the
D=CF8K 89@ JF=K=G argument to ARM’s GCC, and is usually used when interfacing with
soft-float binaries on a hard-float system.

e« D8I:? IM @D8: D89@ @CG ;: lllegal, as the ABI requires floating-point arguments are
passed in registers but the ISA defines no floating-point registers to pass them in.

Example:

double dmul(double a, double b) {
return b * a;
}

If neither the ABI or ISA contains the concept of floating-point hardware then the C compiler
cannot emit any floating-point-specific instructions. In this case, emulation routines are used to
perform the computation and the arguments are passed in integer registers:

$ riscv64-unknown-elf-gcc test.c -march=rv32imac -mabi=ilp32 -o- -S -03

dmul:

mv a4,a2

mv a5,a3

add sp,sp,-16
mv a2,a0

mv a3,al

mv a0,a4

mv al,ab5

sw ra,12(sp)
call __muldf3
Iw ra,12(sp)
add sp,sp,16
jr ra

The second case is the exact opposite of this one: everything is supported in hardware. In this
case we can emit a single =DLC ; instruction to perform the computation.
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$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32d -o- -S -03
dmul:
fmul .d fa0,fal,fa0
ret

The third combination is for users who may want to generate code that can be linked with code
designed for systems that don’t subsume a particular extension while still taking advantage of
the extra instructions present in a particular extension. This is a common problem when dealing
with legacy libraries that need to be integrated into newer systems. For this purpose the com-
piler arguments and multilib paths designed to cleanly integrate with this workflow. The gener-
ated code is essentially a mix between the two above outputs: the arguments are passed in the
registers specified by the @CG  ABI (as opposed to the @CG ; ABI, which could pass these
arguments in registers) but then once inside the function the compiler is free to use the full
power of the RV32IMAFDC ISA to actually compute the result. While this is less efficient than
the code the compiler could generate if it was allowed to take full advantage of the D-extension
registers, it's a lot more efficient than computing the floating-point multiplication without the D-
extension instructions

$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32 -o- -S -03

dmul:
add Sp,sp,-16
sw a0,8(sp)
sw al,12(sp)
fid fa5,8(sp)
sw a2,8(sp)
sw a3,12(sp)
fid fa4,8(sp)
fmul.d fab5,fab,fa4
fsd fa5,8(sp)
w a0,8(sp)
w al,12(sp)
add Sp,sp,16
Jjr ra

< - =09.06<; %><027??

GCC driver script is actually running the preprocessor, then the compiler, then the assembler
and finally the linker. If the user runs GCC with the  J8M< K<DGJ argument, several intermedi-
ate files will be generated.

$ riscv64-unknown-linux-gnu-gcc relocation.c -o relocation -03 --save-temps

e I<CF:8K@FE @: The preprocessed source, which expands any preprocessor directives
(things like #include or #ifdef).

e I<CF:8K@FE J: The output of the actual compiler, which is an assembly file (a text file in the
RISC-V assembly format).

* I<CF:8K@FE F: The output of the assembler, which is an un-linked object file (an ELF file,
but not an executable ELF).

* 1<CF:8K@FE: The output of the linker, which is a linked executable (an executable ELF file).
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1 542 <12 ""<129 +<>8.><A;1?

RISC-V software currently requires that linked symbols reside within a 32-bit range. There are
two types of code models defined for RISC-V, = 219<C and = 21.;E. The medany code model
generates auipc/ld pairs to refer to global symbols, which allows the code to be linked at any
address, while medlow generates lui/ld pairs to refer to global symbols, which restricts the code
to be linked around address zero. They both generate 32-bit signed offsets for referring to sym-
bols, so they both restrict the generated code to being linked within a 2 GiB window. When
building software, the code model parameter is passed into the RISC-V toolchain and it defines
a method to generate the necessary instruction combinations to access global symbols within
the software program. This is done using D:DF;<C D<;8EP D<;CFN. For 32-bit architectures,
we use the medlow code model, while medany is used for 64-bit architectures. This is controlled
within the ‘setting.mk’ file in freedom-e-sdk/bsp folder.

The real problem occurs when:

1. Total program size exceeds 2 GiB, which is rare

2. When global symbols within a single compiled image are required to reside in a
region outside of the 32-bit space

Example for symbols within 32-bit address space:

MEMORY

{

ram (wxalri) : ORIGIN = 0x80,000,000, LENGTH = 0x4000
flash (rxailw) - ORIGIN = 0x20400000, LENGTH = 0x1fc00000

}

Example for symbols outside 32-bit address space:

MEMORY

{
ram (wxalri) : ORIGIN = 0x100000000, LENGTH = 0x4000 /* Updated ORIGIN from

0x80000000 */
flash (rxail!w) : ORIGIN = 0x20400000, LENGTH = 0x1fcO0000

}

If a software example uses the above memory map, and uses either medlow or medany code
models, it will not link successfully. Generated errors will generally contain the following phrase:

relocation truncated to fit:

+<>8.><A;1 D.z=92

Even if global symbols cannot be linked with the toolchain, we can still access any 64-bit
addressable space using pointers. The following example is a straightforward approach to
accessing data within any 64-bit addressable space:

// Create defines for new memory region
#define LARGE_DATA_ SECTION_ADDRESS 0x100000000
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#define LARGE_DATA SECTION_SIZE_IN_BYTES 0x4000
#define DWORD_SIZE 8

int main(void) {

/** * * * * * ialaiaieV 4
/* Example #1 - defining and accessing data outside 32-bit range using array
pointer */

/** * * * * * ialaiaieV 4
uint32_t idx;
uint64_t *data_array, addr;

data_array = (uint64_t *)LARGE_DATA_SECTION_ADDRESS;
for (addr = 0, idx = O; addr < LARGE_DATA SECTION_SIZE_IN_BYTES; addr +=
DWORD_SIZE, idx++) {

// Simply writing data to our region outside of 32-bit range
data_array[idx] = addr;
3

+<>8.><A;1 D.z=92

Here we use an existing =1<<;FD D<K8C data structure to define a new region and API to
access attributes of the region.

#include <metal/memory.h> // required for data struct

// Create defines for new memory region

#define LARGE_DATA_SECTION_ADDRESS 0x100000000
#define LARGE_DATA_SECTION_SIZE_IN_BYTES 0x4000
#define DWORD_SIZE 8

// Create our struct using existing metal_memory type in freedom-metal
const struct metal_memory large_data_mem_struct;
const struct metal_memory large_data_mem_struct = {
._base_address = LARGE_DATA_SECTION_ADDRESS,
._size = LARGE_DATA_SECTION_SIZE_IN_BYTES,
._attrs = {{ R=1, W=1, X=0, .C=1, .A =0},
}:

int main(void) {
// Example #2 - Creating data structure which defines 64-bit addressable regions,
// using existing structure type to define base addr, size, and permissions

size_t _large_data_size;

uintptr_t _large_data_base_addr;

int _atomics_enabled, _cachable_enabled;
uinté4_t *large_data_array;

_large_data_base_addr = metal_memory_get_base address(&large_data_mem_struct);
_large_data_size = metal_memory_get_size(&large_data_mem_struct);
_atomics_enabled = metal_memory_supports_atomics(&large_data_mem_struct);
_cachable_enabled = metal_memory_is_cachable(&large_data_mem_struct);
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large_data_array = (uint64_t *)_ large_data_base_addr;
// Access our new memory region

// large_data_array[x] = 0x0;
// ... add functional code ...

return O;

}

This example can be used if multiple data regions are required with different attributes. Once
the base address is assigned from the required data structure, then pointers can be used to
access memory, similar to Example #1 above. The existing struct and API format allows for mul-
tiple regions to be created easily.

%6=2%;2 .F.>17

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

&2.1 32> +>2 _F.>17?

Read-after-Write (RAW) hazards occur when an instruction tries to read a register before a pre-
ceding instruction tries to write to it. This hazard describes a situation where an instruction
refers to a result that has not been calculated or retrieved. This situation is possible because
even though an instruction was executed after a prior instruction, the prior instruction may only
have processed partly through the core pipeline.

Example:

 Instruction 1: 0 O issavedinO

* Instruction 2: 0 O issavedinO
The first instruction is calculating a value (0 0 ) to be saved in 0 . The second instruction is
going to use the value of 0 to compute a result to be saved in 0 . However, in the core

pipeline, when operations are fetched for the second operation, the results from the first opera-
tion have not yet been saved.

+>602 302> +>602 _F.>17?

Write-after-write (WAW) hazards occur when an instruction tries to write an operand before it is
written by a preceding instruction.

Example:

* Instruction 1: 0 O issavedinO

¢ |nstruction 2: 0 O issavedinO
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Write-back of instruction 2 must be delayed until instruction 1 finishes executing.

In general, MMIO accesses stall when there is a hazard on the result caused by either RAW or
WAW. So, instructions may be scheduled to avoid stalls.
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These custom instructions use the ,2,- " instruction encoding space, which is the same as the
custom CSR encoding space, but with =LE:K

CFLUSH.D.L1
* Implemented as state machine in L1 data cache, for cores with data caches.
¢ Only available in M-mode.
« When 1J 0, 1&.,# & writes back and invalidates all lines in the L1 data cache.

« When 1J 0, 1&.,# & writes back and invalidates the L1 data cache line contain-
ing the virtual address in integer register 1J .

« If the effective privilege mode does not have write permissions to the address in 1J , then a
store access or store page-fault exception is raised.

e Ifthe address in 1J is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

« Note that if the PMP scheme write-protects only part of a cache line, then using a value for
1J in the write-protected region will cause an exception, whereas using a value for 1J in
the write-permitted region will write back the entire cache line.

CDISCARD.D.L1
* Implemented as state machine in L1 data cache, for cores with data caches.
¢ Only available in M-mode.
e Opcode 0! . with optional 1J field in bits 3 4,

 When 1J o, $, + & invalidates, but does not write back, all lines in the L1
data cache. Dirty data within the cache is lost.

88
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e Whentd ~0, $, + & invalidates, but does not write back, the L1 data cache
line containing the virtual address in integer register 1J . Dirty data within the cache line is
lost.

« If the effective privilege mode does not have write permissions to the address in 1J , then a
store access or store page-fault exception is raised.

e Ifthe address in 1J is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

« Note that if the PMP scheme write-protects only part of a cache line, then using a value for
1J in the write-protected region will cause an exception, whereas using a value for 1J in
the write-permitted region will invalidate and discard the entire cache line.

CEASE
« Privileged instruction only available in M-mode.
e Opcode O
 After retiring , , hart will not retire another instruction until reset.

« Instigates power-down sequence, which will eventually raise the :<8J<6=1FD6K@C<61 signal
to the outside of the Core Complex, indicating that it is safe to power down.

PAUSE
e Opcode O 1, whichisa ! ( instruction with predecessor set W and null succes-
sor set. Therefore, * ., is a #$(- instruction that executes as a no-op on all RISC-V imple-
mentations.

¢ This instruction may be used for more efficient idling in spin-wait loops.

¢ This instruction causes a stall of up to 32 cycles or until a cache eviction occurs, whichever
comes first.

>_ ;05 %>216006<; ""<12 “&

This SiFive custom extension adds an M-mode CSR to control the current branch prediction
mode, 9GD at CSR 0

The S76's branch prediction system includes a Return Address Stack (RAS), a Branch Target
Buffer (BTB), and a Branch History Table (BHT). While branch predictors are essential to
achieve high performance in pipelined processors, they can also cause undesirable timing vari-
ability for hard real-time systems. The 9GD register provides a means to customize the branch
predictor behavior to trade average performance for a more predictable execution time.

The 9GD CSR has a single, one bit field defined: Branch-Direction Prediction (9;G).
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>.;05 6>2006<; %>216006< ;

The + &1 9;G field determines the value returned by the BHT component of the branch predic-
tion system. A non-zero value indicates dynamic direction prediction and a zero value indicates
static-taken direction prediction. The BTB is cleared on any write to the 9;G field and the RAS is
unaffected by writes to the 9;G field.

When 9;G is set to static-taken direction prediction mode, the BHT is not updated, but the BTB
continues to be updated. As any write to 9;G clears the BTB, and the BTB is only updated
based on BHT predictions, the BTB will only predict taken when the BHT would also predict
taken. Keeping the BTB active improves performance and reduces energy consumption.

"6 B2 2.0A>2 §?./92 &

The SiFive custom M-mode Feature Disable CSR is provided to enable or disable certain
microarchitectural features. In the S76, CSR 0 has been allocated for this purpose. These
features are described in Table 21.

+.>36;4

The features that can be controlled by this CSR are subject to change or removal in future
releases. It is not advised to depend on this CSR for development.

A feature is fully enabled when the associated bit is zero.

On reset, the Feature Disable CSR is set to 1, disabling all features. The bootloader is responsi-
ble for turning on all required features, and can simply write zero to turn on the maximal set of
features.

SiFive’s Freedom Metal bootloader handles turning on these features; when using a custom
bootloader, clearing the Feature Disable CSR must be implemented.

If a particular core does not support the disabling of a feature, the corresponding bit is hardwired
to zero.

Note that arbitrary toggling of the Feature Disable CSR bits is neither recommended nor sup-
ported; they are only intended to be set from 1 to O.

A particular Feature Disable CSR bit is only to be used in a very limited number of situations, as
detailed inthe D. ==92 )?.42 entry in Table 22.
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2.0A>2 §?./92 &

& 0

60 2?0>6=06< ;

0 Disable data cache clock gating

1 Disable instruction cache clock gating

2 Disable pipeline clock gating

3 Disable speculative instruction cache refill

[8:4] | Reserved
9 Suppress corrupt signal on GrantData messages
[15:10] | Reserved
16 Disable short forward branch optimization
17 Disable instruction cache next-line prefetcher
[63:18] | Reserved

(.72 SiFive Feature Disable CSR

2.0A>2 §?./92 "& )?.42

60 2720>6=ff<; )?.42
3 | Disable speculative instruction cache refill

. 2=92 )?.42 A particular integration might require that execution from the System
Port range be disallowed. Startup code would first configure PMP to prevent execution
from the System Port range, followed by clearing bit 3 of the Feature Disable CSR. This
would enable speculative instruction cache refill accesses, without allowing those to
access the System Port range because PMP would prohibit such accesses.

9 | Suppress corrupt signal on GrantData messages

.2=92)7.42 When running in debug mode on configurations having both ECC
and a BEU, setting bit 9 of the Feature Disable CSR will suppress debug mode errors.

.-2=92)?.42 Startup code could scrub errors present in RAMs at power-on, fol-
lowed by clearing bit 9 of the Feature Disable CSR to allow normal operation.

(.72 SiFive Feature Disable CSR Usage

$i52> A?0i<:z ;?20>A006<;?

Other custom instructions may be implemented, but their functionality is not documented further
here and they should not be used in this version of the S76.
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This chapter describes how interrupt and exception concepts in the RISC-V architecture apply
to the S76.

J02>>A=0 <;02=(?

Interrupts are asynchronous events that cause program execution to change to a specific loca-
tion in the software application to handle the interrupting event. When processing of the interrupt
is complete, program execution resumes back to the original program execution location. For
example, a timer that triggers every 10 milliseconds will cause the CPU to branch to the inter-
rupt handler, acknowledge the interrupt, and set the next 10 millisecond interval.

The S76 supports machine mode interrupts.

The Core Complex also has support for the following types of RISC-V interrupts: local and
global. Local interrupts are signaled directly to an individual hart with a dedicated interrupt
exception code and fixed priority. This allows for reduced interrupt latency as no arbitration is
required to determine which hart will service a given request and no additional memory
accesses are required to determine the cause of the interrupt. Software and timer interrupts are
local interrupts generated by the Core-Local Interruptor (CLINT). The S76 contains no other
local interrupt sources.

Global interrupts are routed through a Platform-Level Interrupt Controller (PLIC), which can
direct interrupts to any hart in the system via the external interrupt. Decoupling global interrupts
from the hart allows the design of the PLIC to be tailored to the platform, permitting a broad
range of attributes like the number of interrupts and the prioritization and routing schemes.

Chapter 8 describes the CLINT. Chapter 9 describes the global interrupt architecture and the
PLIC design.

92
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Exceptions are different from interrupts in that they typically occur synchronously to the instruc-
tion execution flow, and most often are the result of an unexpected event that results in the pro-
gram to enter an exception handler. For example, if a hart is operating in supervisor mode and
attempts to access a machine mode only Control and Status Register (CSR), it will immediately
enter the exception handler and determine the next course of action. The exception code in the
DJK8KLJ register will hold a value of 0x2, showing that an illegal instruction exception occurred.
Based on the requirements of the system, the supervisor mode application may report an error
and/or terminate the program entirely.

There are no specific enable bits to allow exceptions to occur since they are always enabled by
default. However, early in the boot flow, software should set up DKM<: , to adefined value,
which contains the base address of the default exception handler. All exceptions will trap to
DKM<: , - Software must read the D:8LJ< CSR to determine the source of the exception,
and take appropriate action.

Synchronous exceptions that occur from within an interrupt handler will immediately cause pro-
gram execution to abort the interrupt handler and enter the exception handler. Exceptions within
an interrupt handler are usually the result of a software bug and should generally be avoided
since D<G: and D:8LJ< CSRs will be overwritten from the values captured in the original inter-
rupt context.

The RISC-V defined synchronous exceptions have a priority order which may need to be con-
sidered when multiple exceptions occur simultaneously from a single instruction. Table 23
describes the synchronous exception priority order.

;02>>A=( DO02=(<; e
%>6<>60E <12 2?20>6=(6< ;
Highest 3 | Instruction Address Breakpoint
12 | Instruction page fault
1 | Instruction access fault
2 | lllegal instruction
0 | Instruction address misaligned
8,9, 11 | Environment call
3 | Environment break
3 | Load/Store/AMO address breakpoint
6 | Store/AMO address misaligned
4 | Load address misaligned
15 | Store/AMO page fault
13 | Load page fault
7 | Store/AMO access fault
Lowest
5 | Load access fault

(.792 Exception Priority

Refer to Table 30 for the full table of interrupt exception codes.
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Data address breakpoints (watchpoints), Instruction address breakpoints, and environment
break exceptions ( + %) all have the same Exception code (3), but different priority, as shown
in the table above.

Instruction address misaligned exceptions (0x0) have lower priority than other instruction
address exceptions because they are the result of control-flow instructions with misaligned tar-
gets, rather than from instruction fetch.

C.= <;02=0?

The term trap describes the transfer of control in a software application, where trap handling
typically executes in a more privileged environment. For example, a particular hart contains
three privilege modes: machine, supervisor, and user. Each privilege mode has its own software
execution environment including a dedicated stack area. Additionally, each privilege mode con-
tains separate control and status registers (CSRs) for trap handling. While operating in User
mode, a context switch is required to handle an event in Supervisor mode. The software sets up
the system for a context switch, and then an ECALL instruction is executed which synchro-
nously switches control to the Environment call-from-User mode exception handler.

The default mode out of reset is Machine mode. Software begins execution at the highest privi-
lege level, which allows all CSRs and system resources to be initialized before any privilege
level changes. The steps below describe the required steps necessary to change privilege
mode from machine to user mode, on a particular design that also includes supervisor mode.

1. Interrupts should first be disabled globally by writing DIK8KLJ *$ to O, which is the
default reset value.

2. Write DKM<: CSR with the base address of the Machine mode exception handler.
This is a required step in any boot flow.

3. Write DJK8KLJ *** to 0 to set the previous mode to User which allows us to return
to that mode.

4. Setup the Physical Memory Protection (PMP) regions to grant the required regions
to user and supervisor mode, and optionally, revoke permissions from machine
mode.

5. Write JKM<: CSR with the base address of the supervisor mode exception handler.

6. Write D<;<C<> register to delegate exceptions to supervisor mode. Consider &&
and page fault exceptions.

7. Write DJK8KLJ !, to enable floating point (if supported).

8. Store machine mode user registers to stack or to an application specific frame
pointer.

9. Write D<G: with the entry point of user mode software

10. Execute DI<K instruction to enter user Mode.
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There is only one set of user registers (0O -0 ) that are used across all privilege levels, so
application software is responsible for saving and restoring state when entering and exiting
different levels.

;02>>A=0 9<08 6.4>.:

The S76 interrupt architecture is depicted in Figure 71.

RISC-V Core IP

M-mode Software Interrupt—

M-mode Timer Interrupt——|

M-mode External Interrupt—|
X—=Global Interrupts—| PLIC Ha rt 0

Local Interrupt 0———|

Local Interrupt X————|

X

CLINT

64A>2 S76 Interrupt Architecture Block Diagram

1<0.9 ;02>>A=(7?

Software interrupts (Interrupt ID #3) are triggered by writing the memory-mapped interrupt pend-
ing register DJ@G for a particular hart. The DJ@G register is described in Table 28.

Timer interrupts (Interrupt ID #7) are triggered when the memory-mapped register DK@D< is
greater than or equal to the global timebase register DK@D<:DG, and both registers are part of
the CLINT memory map. The DK@D< and DK@D<:DG registers are generally only available in
machine mode, unless the PMP grants user mode access to the memory-mapped region in
which they reside.

Global interrupts are usually first routed to the PLIC, then into the hart using external interrupts
(Interrupt ID #11).
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S 02>>A=( $=2>. fit<;

If the global interrupt-enable DJK8KLJ *$ is clear, then no interrupts will be taken. If
DJK8KLJ "$ is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-
rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect
the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is
cleared.

;02>>A=0 ;0>E .;1 D6@
When an interrupt occurs:
¢ The value of DJK8KLJ "$ is copied into D:8LJ< **$ , and then DJK8KLJ *$ is cleared,
effectively disabling interrupts.
« The privilege mode prior to the interrupt is encoded in DIJK8KLJ "**,
« The current G: is copied into the D<G: register, and then G: is set to the value specified by

DKM<: as defined by the DKM<: ") described in Table 26.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.
When an DI<K instruction is executed, the following occurs:

e The privilege mode is set to the value encoded in DIK8KLJ "**,
« The global interrupt enable, DJK8KLJ *$ , is set to the value of D:8LJ< **$ .

* The G: is set to the value of D<G:.
At this point, control is handed over to software.

At the software level, interrupt attributes can be applied to interrupt processing functions, as
described in Section 8.4.

The Control and Status Registers (CSRs) involved in handling RISC-V interrupts are described
in Section 7.7.

J02>>A=0 <;0><9 .;1 "0.0A? &246742>7?

The S76 specific implementation of interrupt CSRs is described below. For a complete descrip-
tion of RISC-V interrupt behavior and how to access CSRs, please consult The RISC-V Instruc-
tion Set Manual, Volume II: Privileged Architecture, Version 1.10.
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"'.056;2 "0.0A? &246?02> mstatus

The DJIK8KLJ register keeps track of and controls the hart’s current operating state, including
whether or not interrupts are enabled. A summary of the DIK8KLJ fields related to interrupts in
the S76 is provided in Table 24. Note that this is not a complete description of DJK8KLJ as it
contains fields unrelated to interrupts. For the full description of DJK8KLJ, please consult The
RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Interrupts are enabled by setting the *$ bit in DIK8KLJ. Prior to writing DIK8KLJ *$

"".056;2 "0.0A? &246?(2>
"& DJK8KLJ
602 6201 #.:-2 ie> 2?0>6=(6<;
[2:0] Reserved WPRI
3 MIE RW Machine Interrupt Enable
[6:4] Reserved WPRI
7 MPIE RW Machine Previous Interrupt Enable
[10:8] Reserved WPRI
[12:11] MPP RW Machine Previous Privilege Mode
(./792 S76 DJIK8KLJ Register (partial)

,itis

recommended to first enable interrupts in D@<.

*".056;2 (>.= *200<> mtvec

The DKM<: register has two main functions: defining the base address of the trap vector, and
setting the mode by which the S76 will process interrupts. For Direct and Vectored modes, the

interrupt processing mode is defined in the *)

is described in Table 25, and the DKM<: =)

field of the DKM<: register. The DKM<: register

field is described in Table 26.

"".056;2 (>.= *20(<> &2467(2>

& DKM<:
60 6291 #.:-2 ilig 2?20>6=(6< ;
[1:0] MODE WARL ") Sets the interrupt processing mode.
The encoding for the S76 supported modes
is described in Table 26.
[63:2] BASE[63:2] WARL Interrupt Vector Base Address.

Operating in Direct Mode requires 4-byte
alignment.

Operating in Vectored Mode requires
256-byte alignment.

(/92

DKM<: Register
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"$ 6291 ;0<16;4 mtvec.MODE

*_9A2 "'<12 2?20>6=(6<;
0x0 Direct All asynchronous interrupts and synchronous
exceptions set G: to
Ox1 Vectored Exceptions setG: to , , interrupts set G: to
+4xD:8LI< 1 )
>2 Reserved
(.72 Encoding of DKM<: ™)
"'<12 6200
When operating in direct mode, all interrupts and exceptions trap to the DKM<: , address.

Inside the trap handler, software must read the D:8LJ< register to determine what triggered the
trap. The D:8LJ< register is described in Table 29.

When operating in Direct Mode, , must be 4-byte aligned.

"'<12 *200<>21

While operating in vectored mode, interrupts set the G: to DKM<: , *4 x exception code
(D:8LJ< 1 ) ). For example, if a machine timer interrupt is taken, the G: is set to
DKM<: , + 0 . Typically, the trap vector table is populated with jump instructions to trans-

fer control to interrupt-specific trap handlers.
In vectored interrupt mode, , must be 256-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code 11. Thus, when
interrupt vectoring is enabled, the G: is set to address DKM<: , + 0 forany global inter-
rupt.

"".056;2 ;02>A=0 ;./92 mie

Individual interrupts are enabled by setting the appropriate bit in the D@< register. The D@< regis-
ter is described in Table 27.
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"".05652 02>>A=0 ;./92 &2467?02>

& D@<
602 6291 #.:-2 ilig 2?0>6=(6< ;
[2:0] Reserved WPRI
3 MSIE RW Machine Software Interrupt Enable
[6:4] Reserved WPRI
7 MTIE RW Machine Timer Interrupt Enable
[10:8] Reserved WPRI
11 MEIE RW Machine External Interrupt Enable
[63:12] Reserved WPRI

(./792 D@< Register

"r.056;2 ;02>>A=0 %2;16;4 mip

The machine interrupt pending (D@G) register indicates which interrupts are currently pending.
The D@G register is described in Table 28.

"*_056;2 ;02>>A=0 %2;16;4 &246?2(2>
"& D@G
607 6291 #.:-2 ie> 2?20>6=(6< ;
[2:0] Reserved WIRI
3 MSIP RO Machine Software Interrupt Pending
[6:4] Reserved WIRI
7 MTIP RO Machine Timer Interrupt Pending
[10:8] Reserved WIRI
11 MEIP RO Machine External Interrupt Pending
[63:12] Reserved WIRI

(./792 D@G Register

"".056;2 _.A?2 mcause

When a trap is taken in machine mode, D:8LJ< is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
D:8LJ< is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in D@G. For example, a Machine Timer Interrupt causes D:8LJ< to
be setto O 6 6 6 . D:8LJ< is also used to indicate the cause of synchronous
exceptions, in which case the most-significant bit of D:8LJ< is set to 0.

See Table 29 for more details about the D:8LJ< register. Refer to Table 30 for a list of synchro-
nous exception codes.
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"T.056;2 _A?2 &246?(2>
"& D:8LJ<
60 6291 #.:-2 o> 2?0>6=(6< ;
[9:0] Exception Code WLRL | A code identifying the last exception.
[62:10] Reserved WLRL
63 Interrupt WARL 1, if the trap was caused by an interrupt; O
otherwise.
(.72 D:8LJ< Register
;02>>A=( DO02=fi<; <127?
S 02>>A=( DO2=(i<; <12 2?20>6=(6<;
1 0-2 | Reserved
1 3 | Machine software interrupt
1 4-6 | Reserved
1 7 | Machine timer interrupt
1 8-10 | Reserved
1 11 | Machine external interrupt
1 >12 | Reserved
0 0 | Instruction address misaligned
0 1 | Instruction access fault
0 2 | lllegal instruction
0 3 | Breakpoint
0 4 | Load address misaligned
0 5 | Load access fault
0 6 | Store/AMO address misaligned
0 7 | Store/AMO access fault
0 8 | Environment call from U-mode
0 9-10 | Reserved
0 11 | Environment call from M-mode
0 >12 | Reserved
(.792 D:8LJ< Exception Codes
OOz Az D2>A=0 <;34A>.00<;

The minimum configuration needed to configure an interrupt is shown below.

* Write DKM<: to configure the interrupt mode and the base address for the interrupt vector

table.

< Enable interrupts in memory mapped PLIC register space. The CLINT does not contain

interrupt enable bits.

« Write D@< CSR to enable the software, timer, and external interrupt enables for each privi-

lege mode.
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« Write DJK8KLJ to enable interrupts globally for each supported privilege mode.

; 02>>A=0 %>6<>6(627?

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 9.
S76 interrupts are prioritized as follows, in decreasing order of priority:

» Machine external interrupts
* Machine software interrupts

* Machine timer interrupts

;02>>A=( 1 .02 ; OE

Interrupt latency for the S76 is four :FI1<6:CF:B6 cycles, as counted by the number of cycles it
takes from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of three clock cycles, where
the PLIC is clocked by :CF:B. This means that the total latency, in cycles, for a global interrupt
is: 4+ 3 x (:FI<6:CF:B6 Hz + :CF:B Hz). This is a best case cycle count and assumes the
handler is cached or located in ITIM. It does not take into account additional latency from a
peripheral source.



5.=02>

<>2 1<0.9 ;i2>A=i<> 1 #(

This chapter describes the operation of the Core-Local Interruptor (CLINT). The S76 CLINT
complies with The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version
1.10.

5 HART 0
CLINT
Software Interrupt, ID: 3
Local Interrupts, ID: 16...X Timer Interrupt, ID: 7

X =XLEN
External Interrupt, ID: 11

64A>2 CLINT Block Diagram
The CLINT has a small footprint and provides software, timer, and external interrupts directly to

the hart. The CLINT block also holds memory-mapped control and status registers associated
with software and timer interrupts.

U #( %6<>6062? . ;1 %>22 = =fb<;

The CLINT has a fixed priority scheme based on interrupt ID, and nested interrupts (preemp-
tion) within a given privilege level is not supported. Higher privilege levels may preempt lower

102
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privilege levels, however. The CLINT offers two modes of operation, Direct mode and Vectored

mode.

In Direct mode, all interrupts and exceptions trap to DKM<: , . In Vectored mode, exceptions

trap to DKM<:

1 #( *200<> (/92

mtvec + (4 * X)

mtvec + 0x40

mtvec + 0x3C

mtvec + 0x38

mtvec + 0x34

mtvec + 0x30

mtvec + 0x2C

mtvec + 0x28

mtvec + 0x24

mtvec + 0x20

mtvec + Ox1C

mtvec + 0x18

mtvec + 0x14

mtvec + 0x10

mtvec + Ox0C

mtvec + 0x08

mtvec + 0x04

mtvec + 0x00

64A>2

, , but interrupts will jump directly to their vector table index. See Section 7.7.2
for more information about DKM<:

CLINT
Machine Mode
Interrupt Vector

Table

Local Interrupts, ID: 16...X
External Interrupt, ID: 11
Timer Interrupt, ID: 7
Software Interrupt, ID: 3

Reserved

Vector Table Base Address
mtvec + (4 * Interrupt ID)

CLINT Interrupts and Vector Table

The CLINT vector table is populated with jump instructions, since hardware jumps to the index
in the vector table first, then subsequently jumps to the handler. All exception types trap to the

first entry in the table, which is DKM<:

An example CLINT vector table is shown below.
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.weak default_exception_handler
.balign 4, @
.global default_exception_handler

.weak software_handler
.balign 4, @
.global software_handler

.weak timer_handler
.balign 4, @
.global timer_handler

.weak external_handler
.balign 4, @
.global external_handler

.option norvc

.weak _ mtvec_clint_wvector_table
#if _ riscv_xlen == 32

.balign 128, @

#else

.balign 256, @

#endif

.global _ mtvec_clint_wvector_table
_ mitvec_clint_vector_table:

IRQ @:

j default_excepticon_handler
IRQ 1:

j default_wvector_handler
IRQ_2:

j default_wvector_handler
IRQ 3:

j software_handler
IRQ 4:

j default_wvector_handler
IRQ 5:

j default_wvector_handler
IRQ 6&:

j default_wvector_handler
IRQ 7:

j timer_handler
IRQ 8:

j default_vector_handler
IRQ 9:

j default_vector_handler
IRQ 1@:

j default_vector_handler
IRQ 11:

j external_handler
IRQ 12:

j default_wvector_handler
IRQ 13:

j default_vector_handler
IRQ 14:

j default_vector_handler
IRQ 15:

j default_wvector_handler

64A>2 CLINT Vector Table Example
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V#( 02>>A=0 " <A>02?

The S76 supports the standard RISC-V software, timer, and external interrupts. These interrupt
inputs are exposed at the top-level via the CF:8C6@EK<11LGKJ signals. Any unused
CF:8C6@EK<IILGKJ inputs should be tied to logic 0. These signals are positive-level triggered.

See the S76 User Manual for a description of this interrupt signal.

CLINT Interrupt IDs are provided in Table 31.

- J02>>A=( 7
5 02>>A=0 #<(2?
0-2 Reserved
3 msip Machine Software Interrupt
4-6 Reserved
7 mtip Machine Timer Interrupt
8-10 Reserved
11 meip Machine External Interrupt
12-15 Reserved

(./792 S76 Interrupt IDs

VA 02>>A=0 00>6/A02

To help with efficiency of save and restore context, interrupt attributes can be applied to func-
tions used for interrupt handling.

MF@; 668KKI@9LK<66 @EK<IILGK
JF=KN8I1<6?8E;C<l MF@; R
?8E;C<l :F;<

T
11 i1
12 void software_handler (void) { =] 12 void __attribute__ ((interrupt))
13 addi sp,sp,-16 13 software_handler (veid) {
14 14 addi sp,sp,-32
15 int my_isr_handler_flag = 1; 15 su a5,28(sp)
16 1i a5,1 16
17 sw a5,12(sp) 17 int my_isr_handler_flag = 1;
18 18 1i a5,1
19 } 19 sw a5,12(sp)
28 nop 28
21 addi sp,sp,16 &) 21}
22 ret 22 nop
23 23 1w a5,28(sp)
24 24 addi sp,sp,32
25 25 mret
el TR

§4A>2 CLINT Interrupt Attribute Example

This attribute will save and restore and registers that are used within the handler, and insert an
DI<K instruction at the end of the handler.
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VH(""2Z<>E™" =

Table 32 shows the memory map for CLINT on the S76. Note that there are no enable bits for
specific interrupts within the CLINT memory map, as the enables for these interrupts reside in
the D@< CSR for each interrupt, and the DJK8KLJ D@< CSR bit, which enables all machine inter-
rupts globally. See Section 7.7.3 for a description of the interrupt enable bits in the D@< CSR,
and Section 7.7.4 for a description of the interrupt pending bits in the D@G CSR.

11>2?7 +6105 6> 27?20>6=(0f< ; #<(2?

0 6 4B RW | DJ@G for hart O MSIP Register (1-bit wide)
0] 6 Reserved

Z
0] 6 111
0 6 8B RW | DK@D<:DG for hart 0 | MTIMECMP Register
0 6 Reserved

Z
0 6 1!
0 6 11 8B RW | DK@D< Timer Register
0 6 Reserved

(.792 CLINT Register Map

&2467?02> 27?0>6=(6<;?

This section describes the functionality of the memory-mapped registers in the CLINT.

T % &246702>?

Machine mode software interrupts are generated by writing to the memory-mapped control reg-
ister DJ@G. The DJ@G register is a 32-bit wide + &1 register, where the upper 31 bits are tied to
0. The least-significant bit is reflected in the *,$* bit of the D@G CSR. Other bits in the DJ@G reg-
isters are hardwired to zero. On reset, each DJ@G register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as
harts may write each other’s DJ@G bits to effect interprocessor interrupts.

(6 - 2> &246?(2>?

DK@D< is a 64-bit read-write register that contains the number of cycles counted from the
I1K:6KF>>C< signal, which is described in the S76 User Guide. A timer interrupt is pending
whenever DK@D< is greater than or equal to the value in the DK@D<:DG register. The timer inter-
rupt is reflected in the DK@G bit of the D@G register, described in Chapter 7.

On reset, DK@D< is cleared to zero. The DK@D<:DG registers are not reset.
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%9._03<>= 12B29 ;02>>A=( <;(@><%92>
%1

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the S76.
The PLIC complies with The RISC-V Instruction Set Manual, Volume II: Privileged Architecture,
Version 1.10 and can support a maximum of 127 external interrupt sources with 7 priority levels.

The S76 PLIC resides in the :CF:B timing domain, allowing for relaxed timing requirements. The
latency of global interrupts, as perceived by a hart, increases with the ratio of the :FI1<6:CF:B6
frequency and the :CF:B frequency.

ll2:<>E ll-:

The memory map for the S76 PLIC control registers is shown in Table 33. The PLIC memory
map only supports aligned 32-bit memory accesses.

107
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%l  &246702> " .=
Address +6105 06> 2?0>6=(6<; #<(27?
0 6 Reserved
0 6 4B RW | source 1 priority _
7 _See Sec_tlon 9.3 for more
— information
0 6 ! 4B RW | source 127 priority
0 6 Reserved
VA
0 6 4B RO | Start of pending array ,
7 See Sec_tlon 9.4 for more
. information
0 6 4B RO | Last word of pending array
0 6 Reserved
Z
0 6 4B RW | Start Hart 0 M-Mode interrupt
7 enables See Section 9.5 for more
0 6 4B RW | End Hart 0 M-Mode interrupt information
enables
0 6 Reserved
Z
0 6 4B RW | Hart 0 M-Mode priority See Section 9.6 for more
threshold information
0 6 4B RW | Hart 0 M-Mode claim/com- See Section 9.7 for more
plete information
0 6 Reserved
VA
0 6 End of PLIC Memory Map

(.792 PLIC Register Map

S02>>A=(0 " <A>027

The S76 has 127 interrupt sources. These are external global interrupts. These signals are posi-
tive-level triggered and are not configurable.

In the PLIC, as specified in The RISC-V Instruction Set Manual, Volume II: Privileged Architec-
ture, Version 1.10, Global Interrupt ID O is defined to mean "no interrupt," hence
>CF98C6@EK<I11LGKJI3 4 corresponds to PLIC Interrupt ID 1. Thus, the first usable PLIC inter-

rupt has ID value of 2.

See the S76 User Guide for a description of global interrupts.
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- 02>>A=0 %>6<>60627

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped
GI@F I1@KP register. The S76 supports 7 levels of priority. A priority value of O is reserved to mean
"never interrupt”" and effectively disables the interrupt. Priority 1 is the lowest active priority, and
priority 7 is the highest. Ties between global interrupts of the same priority are broken by the
Interrupt ID; interrupts with the lowest ID have the highest effective priority. See Table 34 for the
detailed register description.

%1 ; 02>>A=( %>6<>HiE &246?02> priority

L7220 115277 0 6 + 4 x Interrupt ID
602 6201 #. -2 ie> &0 2?20>6=(6< ;
[2:0] Priority RW X Global interrupt priority.
[31:3] Reserved RO 0

(./7%2 PLIC Interrupt Priority Register

S02>>A=0 %2 ;16;4 607

The current status of the interrupt source pending bits in the PLIC core can be read from the
pending array, organized as 4 words of 32 bits. The pending bit for interrupt ID N is stored in bit
(N mod 32) of word (IV/32). As such, the S76 has 4 interrupt pending registers. Bit 0 of word
0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-
ing a claim as described in Section 9.7.

%1 J02>>A=0 %2 ;16;4 &246?02> pendingl
.72 1152?72 0 6

602 6291 #.:-2 6> &?20 2?20>6=(6<;

0 Interrupt 0 Pend- RO 0 Non-existent global interrupt O is hard-
ing wired to zero

1 Interrupt 1 Pend- RO 0 Pending bit for global interrupt 1
ing

2 Interrupt 2 Pend- RO 0 Pending bit for global interrupt 2
ing

31 Interrupt 31 Pend- RO 0 Pending bit for global interrupt 31
ing

(./92 PLIC Interrupt Pending Register 1
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%1 J02>>A=0 %2;16;4 &246?02> pending4

.72 115277 0 6
607 6201 #. -2 ie> &?0 2?20>6=(6<;
0 Interrupt 96 Pend- RO 0 Pending bit for global interrupt 96

ing
31 Interrupt 127 RO 0 Pending bit for global interrupt 127
Pending
(./792 PLIC Interrupt Pending Register 4
S02>>A=0 ;./7927

Each global interrupt can be enabled by setting the corresponding bit in the <E89C< registers.
The <E89C< registers are accessed as a contiguous array of 4 x 32-bit words, packed the same

way as the G<E;@E> bits. Bit O of enable word 0 represents the non-existent interrupt ID 0 and is

hardwired to 0.

64-bit and 32-bit word accesses are supported by the <E89C<J array in SiFive RV64 systems.

%1 J02>>A=( ;./92 &246?(2> enablel 3<> >f " ""<12
.72 115277 0 6
602 6201 #.:-2 6> &0 2?20>6=(<;
0 Interrupt O Enable RO 0 Non-existent global interrupt O is hard-
wired to zero
1 Interrupt 1 Enable RW X Enable bit for global interrupt 1
2 Interrupt 2 Enable RW X Enable bit for global interrupt 2
31 Interrupt 31 RW X Enable bit for global interrupt 31
Enable
(.72 PLIC Interrupt Enable Register 1 for Hart 0 M-Mode
%1 J02>>A=( ;./92 &246?(2> enabled4 3<> >f "' ""<12
.72 115277 0 6
602 6291 #.:-2 ae> &0 2?20>6=(6< ;
0 Interrupt 96 RwW X Enable bit for global interrupt 96
Enable
31 Interrupt 127 RW X Enable bit for global interrupt 127
Enable

(.72 PLIC Interrupt Enable Register 4 for Hart 0 M-Mode
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%>6<>60E (5>275<91?

The S76 supports setting of an interrupt priority threshold via the K?1<J?FC; register. The
K?1<J?FC; isa + &! field, where the S76 supports a maximum threshold of 7.

The S76 masks all PLIC interrupts of a priority less than or equal to K?1<J?FC;. For example, a
K?1<J?FC; value of zero permits all interrupts with non-zero priority, whereas a value of 7
masks all interrupts. If the threshold register contains a value of 5, all PLIC interrupt configured
with priorities from 1 through 5 will not be allowed to propagate to the CPU.

%Y ;02>>A=0 %6<>B0E (5>2?5<91 &246?(2> threshold
.72 115277 0 6
607 6291 #.:-2 ie> &?0 2?20>6=(6<;
[2:0] Threshold RW X Sets the priority threshold
[31:3] Reserved RO 0

(.792 PLIC Interrupt Threshold Register

S02>>A=0 9.6z %><027??

A S76 hart can perform an interrupt claim by reading the :C8@D :FDGC<K< register (Table 40),
which returns the ID of the highest-priority pending interrupt or zero if there is no pending inter-

rupt. A successful claim also atomically clears the corresponding pending bit on the interrupt
source.

A S76 hart can perform a claim at any time, even if the MEIP bit in its D@G (Table 28) register is
not set.

The claim operation is not affected by the setting of the priority threshold register.

S2>>A=0 <z =9206<;

A S76 hart signals it has completed executing an interrupt handler by writing the interrupt ID it
received from the claim to the :C8@D :FDGC<K< register (Table 40). The PLIC does not check
whether the completion ID is the same as the last claim ID for that target. If the completion ID

does not match an interrupt source that is currently enabled for the target, the completion is
silently ignored.
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%1 9.6 <z==0202 &2467i2> claim

.72 115277 0 6
607 6201 #. -2 6> &?0 2?20>6=(6<;
[31:0 Interrupt Claim/ RW X A read of zero indicates that no inter-
Complete for Hart rupts are pending. A non-zero read
0 M-Mode contains the id of the highest pending
interrupt. A write to this register signals
completion of the interrupt id written.

(.72 PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode

The PLIC cannot forward a new interrupt to a hart that has claimed an interrupt, but has not yet
finished the complete step of the interrupt handler. Thus, the PLIC does not support preemption
of global interrupts to an individual hart.

Interrupt IDs for global interrupts routed through the PLIC are independent of the interrupt IDs
for local interrupts. The PLIC handler may check for additional pending global interrupts once
the initial claim/complete process has finished, prior to exiting the handler. This method could
save additional PLIC save/restore context for global interrupts.

D. =02 %! S02>>A=0 . ;192>

Since the PLIC interfaces with the CPU through external interrupt #11, the external handler
must contain an additional claim/complete step that is used to handshake with the PLIC logic.

MF@; <OK<IE8C67?8E;C<I R
><K K?< ?@>7?<JK GI@FI@KP G<E;Q@E> *&$ @EK<IILGK
L@EK 6K @EKG6ELD GC@: :C8@D6:FDC<K<

918E:? KF ?8E;C<I
GC@:678E;C<I3@EK6ELD4

:FDGC<K< @EK<IILGK 9P NI@K@E> @EK<IILGK ELD9<l 98:B KF *&$
GC@: :C8@D6:FDGC<K< @EKGELD

; 8;;0K@FESC :?<:BJ =FI *&$ G<E;@E> ?<I< @= ;<JOI<;
T

If a CPU reads claim/complete and it returns 0x0, the interrupt does not require processing, and
thus writeback of the claim/complete is not necessary.

The GC@:678E;C<134 routine shown above demonstrates one method to implement a soft-
ware table where the offset of the function that resides within the table is determined by the
PLIC interrupt ID. The PLIC interrupt ID is unique to the PLIC, in that it is completely indepen-
dent of the interrupt IDs of local interrupts.
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(9216:8 >><> 2BG02

The Error Device is a TileLink slave that responds to all requests with a TileLink ;<E@<; error
and all reads with a :FIILGK error. It has no registers. The entire memory range discards writes
and returns zeros on read. Both operation acknolwedgements carry an error indication.

The Error Device serves a dual role. Internally, it is used as a landing pad for illegal off-chip
requests. However, it is also useful for testing software handling of bus errors.
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W<C2>"".;.42:-2:10

The following chapter establishes flows for powering up, powering down, and resetting the hard-
ware of the S76.

>1C.>2 &27?20

The following list summarizes the hardware reset values required by the RISC-V Privileged
Specification and applies to all SiFive designs.

=

. Privilege mode is set to machine mode.
2. DJK8KLJ "$ and DJK8KLJ "*+/ are required to be 0.

3. The D@J8 register holds the full set of supported extensions for that implementation,
and D@J8 "1& defaults to the widest supported ISA available, referred to as
MXLEN.

4. The G: is set to the implementation specific reset vector.
5. The D:8LJ< register is set to a value indicating the cause of the reset.

6. The PMP configuration fields for address matching mode ( ) and Lock (&) are set to
0, which defaults to no protection for any privilege level.

The internal state of the rest of the system should be completed by software early in the boot
flow.

DIE << <C

For the early stages of boot, some of the first things software must consider are listed below:

« The global pointer (>G or 0 ) user register should be initialized to the 66>CF98C6GF@EK<I
linker generated symbol and not changed at any point in the application program.
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e The stack pointer (JG or O ) user register should be also set up as a standard part of the
boot flow.

» All other user registers (0 ,0 -0 ) can be written to O upon initial power-on.

* The DKM<: register holds the default exception handler base address, so it is important to
set up this register early in the boot flow so it points to a properly aligned, valid exception
handler location.

e Zero out the 93J section, and copy data sections into RAM areas as needed.

S02>>A=0 "0.02 A>;4 DIE <<

Since DJK8KLJ *$ defaults to O, all interrupts are disabled globally out of reset. Prior to
enabling interrupts globally through DJK8KLJ *$ , consider the following:

» Ensure no timer interrupts are pending by checking the D@G *-$* bit. The DK@D< register is
0 out of reset, and starts running immediately. However, the DK@D<:DG register does not
have a reset value.

If no timer interrupt is required, leave D@< "-$ equal to O prior to enabling global interrupt
with DIK8KLJ "$ .

If the application requires a timer interrupt, write DK@D<:DG to a value in the future for the
next timer interrupt before enabling DIKSKLJ *$ .

» Write the remaining bits in the D@< CSR to the desired value to enable interrupts based on
the requirements of the system. This register is not defined to have a reset value.

e Each DJ@G register in the Core-Local Interruptor (CLINT) or Core-Local Interrupt Controller
(CLIC) address space is reset to 0, so no specific initialization is required for local software
interrupts.

Since DJ@G is memory-mapped, any hart in the system may trigger a software interrupt on
another hart, so this should be considered during the boot flow on a multi-hart system.

« If a Platform-Level Interrupt Controller (PLIC) exists, check the PLIC pending status. The
PLIC memory mapped pending bits are read-only, so the pending status should be cleared
at the source if they reset to a non-zero status. Then, enable the PLIC interrupts as required
by the system prior to enabling interrupts in the system via DIJK8KLJ "$ .

$i52> << (62 <;?612>.06<;?

« Ensure the remaining bits in the DJK8KLJ CSR are written to the desired application specific
configuration at boot time.

« If a design includes user and supervisor privilege levels, initialize D<;<C<> and D@;<C<> reg-
isters to O until supervisor-level trap handling is set up correctly using JKM<:.
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e The D:8LJ<, D<G:, and DKM8C registers hold important information in the event of a synchro-
nous exception. If the synchronous exception handler forces reset in the application, the
contents of these registers can be checked to understand root cause.

» The PMP address and configuration CSRs are required to be initialized if user or supervisor
privilege levels are part of the design. By default, user and supervisor modes have no per-
missions to the memory map unless explicitly granted by the PMP.

* The D:P:C< CSR is a 64-bit counter on both RV32 and RV64 systems, and it counts the
number of cycles executed by the hart. It has an arbitrary value after reset and can be writ-
ten as needed by the application.

 Instructions retired can be counted by the D@EJK 1<K register, and this also has an arbitrary
value after reset. This can be written to any given value.

« The D?GD<M<EK1 CSR selects which hardware events to count, where the count is reflected
in D?GD:FLEK<11. At any point, the D?GD: FLEK<I1 registers can be directly written to reset
their value when the D?GD<M<EK1 register has the proper event selected.

e There is no requirement for boot time initialization to any of the registers within the Debug
Module, unless there is an application specific reason to do so.

» All other CSRs during boot time initialization should be considered based on system and
application requirements.

%N<C2> <C; C

Designate one core as D8JK<I and all others as JC8M<J. For our Core IP product, coordination
with an OK<IE8C ><EK is required.

1. External Agent: Wait for communication from master core to initiate the following
steps:

a. Stop sending inbound traffic (both transactions and interrupts) into the
core complex.

b. Wait until all outstanding requests to the Core Complex are completed,
then

c. Wait until -<8J3<6=1FD6K@C<61 is high for the master core and all slave
cores.

d. Once :<8J<6=1FD6K@C<61 is high for master core and all slave cores,
apply reset to the whole core complex.

2. Master core:
a. The following sequence should be executed in machine mode and NOT
out of a remote ITIM/DTIM.

b. Communicate with external agent to initiate cease power-down
sequence.
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c. Poll external agent until steps 1.a and 1.b are completed.

d. Disable all interrupts except those related to bus errors/memory corrup-
tion, and IPIs (if using enabled IPI to coordinate power-down sequence
among cores).

i. Copy contents of any TIMs/LIMs into external memory.

ii. Master core: if there is an L2 cache, flush it (all addresses at
which cacheable physical memory exists).

iii. If there is no L2 cache, but there is a data cache, flush it
using full-cache variant of 1&.,# & , if available; or per-
line variant if not

e. Disable all interrupts.
f. Execute CEASE instruction.
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2/A4

This chapter describes the operation of SiFive debug hardware, which follows The RISC-V
Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints
are supported.

2/A4 T &?

This section describes the per hart Trace and Debug Registers (TDRs), which are mapped into
the CSR space as follows:

"&H#H.Z2 2?20>6=(6< ; W<C21 00277 ""<12?
KJ<C<:K Trace and debug register select Debug, Machine
K;8K8 First field of selected TDR Debug, Machine
K;8K8 Second field of selected TDR Debug, Machine
K;8K8 Third field of selected TDR Debug, Machine
;:J1 Debug control and status register Debug
;G: Debug PC Debug
;JI18K:? Debug scratch register Debug

(.792 Debug Control and Status Registers

The ;:J1, ;G:, and ;J:18K:? registers are only accessible in debug mode, while the KJ<C<:K
and K;8K8 registers are accessible from either debug mode or machine mode.

(.02 .;1 2/A4 &2467(2> "29200 tselect

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed
through one level of indirection where the KJ<C<:K register selects which bank of three
K;8K8 registers are accessed via the other three addresses.

The KJ<C<:K register has the format shown below:
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(.02 _;1 2/A4 "29200 &2467?(2>

"& KJ<C<:K
602 6291 #.:-2 06> 2?20>6=[6<;
[31:0] @E;<0 WARL | Selection index of trace and debug registers

(.792 KJ<C<:K CSR

The @E;<O field is a + &! field that does not hold indices of unimplemented TDRs. Even if
@E ;<0 can hold a TDR index, it does not guarantee the TDR exists. The KPG< field of K ; 8K8
must be inspected to determine whether the TDR exists.

(.02 .;1 2/A4 0. &246?(2>? tdatal-3

The K;8K8 registers are 64-bit read/write registers selected from a larger underlying bank of
TDR registers by the KJ<C<:K register.

(.02 .;1 2/A4 0. &246?(2>
"& K;8K8
62 6201 #. -2 | B> | 220%6=f<;
[27:0 TDR-Specific Data
[31:28] KPG< RO Type of the trace & debug register selected
by KJ<C<:K

(/%2 K;8Kk8 CSR

.02 ;1 2/A4 4. &246742>? ;1
"& K;8K8
62 6201 #. -2 | B> | 220%6=f<;
[31:0 TDR-Specific Data

(/92 K;8k8  CSRs

The high nibble of K;8K8 contains a 4-bit KPG< code that is used to identify the type of TDR
selected by KJ<C<:K. The currently defined KPG<J are shown below:

(E=2 2?20>6=(6<;

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger
>3 Reserved

(.7%2 K;8K8 Types

The ;DF;< bit selects between debug mode (;DF;<=1) and machine mode (;DF;<=1) views of
the registers, where only debug mode code can access the debug mode view of the TDRs. Any
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attempt to read/write the K;8K8 registers in machine mode when ;DF ;<=1 raises an illegal
instruction exception.

2/A4  <;(P<9.;1 "0.0A? &246?02> dcsr

This register gives information about debug capabilities and status. Its detailed functionality is
described in The RISC-V Debug Specification, Version 0.13.

2/A4% dpc

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-
tion resumes at this PC.

2/A4 "0>_(05 dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by
the code in Debug ROM. The debugger may use it as described in The RISC-V Debug Specifi-
cation, Version 0.13.

>2.8=<6;0?

The S76 supports four hardware breakpoint registers per hart, which can be flexibly shared
between debug mode and machine mode.

When a breakpoint register is selected with KJ<C<:K, the other CSRs access the following infor-
mation for the selected breakpoint:

"&H.Z2 >2.8=<6;0 9.7 2?20>6=(6< ;
KJ<C<:K KJ<C<:K Breakpoint selection index
K;8K8 D:FEKIFC Breakpoint match control
K;8K8 D8;;1<JJ Breakpoint match address
K;8K8 N/A Reserved

(.72 TDR CSRs when used as Breakpoints

>2.8=<6;0"".005 <;@><9&246?02> mcontrol

Each breakpoint control register is a read/write register laid out in Table 47.



Copyright © 2019-2020, SiFive Inc. All rights reserved. 121

>2.8=<6;0 <;0><9 &2462(2>

"& D:FEKIFC

602 6291 #.:-2 ie> &?0 2?20>6=(6<;

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH
3 U WARL X Address match on user mode

4 S WARL X Address match on supervisor mode
5 Reserved WPRI X Reserved

6 M WARL X Address match on machine mode

[10:7] D8K:? WARL X Breakpoint Address Match type
11 1 ?8@E WARL 0 Chain adjacent conditions.

[15:12] 8:K@FE WARL 0 Breakpoint action to take.

[17:16] J@Q<CF WARL 0 Size of the breakpoint. Always O.
18 K@D@E> WARL 0 Timing of the breakpoint. Always 0.
19 J<C<:K WARL 0 Perform match on address or data.

Always 0.
20 Reserved WPRI X Reserved

[26:21] D8JBD80O RO 4 Largest supported NAPOT range
27 ;DF;< RwW 0 Debug-Only access mode

[31:28] KPG< RO 2 Address/Data match type, always 2

(./792 Test and Debug Data Register 3

The KPG< field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-
taining address match logic.

The 8:K@FE field is a 4-bit read-write + &! field that specifies the available actions when the
address match is successful. The value 0 generates a breakpoint exception. The value 1 enters
debug mode. Other actions are not implemented.

The R/WI/X bits are individual + &! fields, and if set, indicate an address match should only be
successful for loads, stores, and instruction fetches, respectively. All combinations of imple-
mented bits must be supported.

The M/S/U bits are individual + &! fields, and if set, indicate that an address match should
only be successful in the machine, supervisor, and user modes, respectively. All combinations of
implemented bits must be supported.

The D8K:? field is a 4-bit read-write + &! field that encodes the type of address range for
breakpoint address matching. Three different D8K:? settings are currently supported: exact,
NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches
and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.
Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered
breakpoint register giving the byte address at the bottom of the range and the higher-numbered
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breakpoint register giving the address 1 byte above the breakpoint range, and using the :?8@E
bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to
encode the size of the range as follows:

maddress ""_005 fE=2 . ;1 ?6F2

82888888 Exact 1 byte

8288888 2-byte NAPOT range

878888 4-byte NAPOT range

87888 8-byte NAPOT range

8788 16-byte NAPOT range

878 32-byte NAPOT range
Z

8 Z 23L_byte NAPOT range

(.792 NAPOT Size Encoding

The D8JBD8O field is a 6-bit read-only field that specifies the largest supported NAPOT range.
The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.
A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is
encoded in D8; ; 1<JJ with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding
the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with
the - ?8@E bit. The first breakpoint can be set to match on an address using 8:K@FE of 2 (greater
than or equal). The second breakpoint can be set to match on address using 8:K@FE of 3 (less
than). Setting the -?8@E bit on the first breakpoint prevents the second breakpoint from firing
unless they both match.

>2.8=<6;0"".005 11>2?7? &246?02> maddress

Each breakpoint match address register is a 64-bit read/write register used to hold significant
address bits for address matching and also the unary-encoded address masking information for
NAPOT ranges.

>2.8=<6;0 D20Af6<;

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-
ware will generate a breakpoint trap when either half of the emulated access falls within the
address range. Implementations that support misaligned accesses in hardware must trap if any
byte of an access falls within the matching range.
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Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-
isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the
D:8LJ< register and with 98;8; ; I holding the instruction or data address that caused the trap.

"5.>6;4 >2.8=<6;0? 20C22; 2/A4 _;1"".056;2 ""<12

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,
the K; IKPG< will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,
either because a user explicitly requested one or because the user is debugging code in ROM.

2/A4 "2 <>E L=

This section describes the debug module’s memory map when accessed via the regular system
interconnect. The debug module is only accessible to debug code running in debug mode on a
hart (or via a debug transport module).

2/A4 & " _;1%<4>. -  A3B2> 0x300HOX3FF

The S76 has 16 32-bit words of program buffer for the debugger to direct a hart to execute arbi-
trary RISC-V code. Its location in memory can be determined by executing 8@LG: instructions
and storing the result into the program buffer.

The S76 has two 32-bit words of debug data RAM. Its location can be determined by reading
the ="# +-$(1) register as described in the RISC-V Debug Specification. This RAM space is
used to pass data for the Access Register abstract command described in the RISC-V Debug
Specification. The S76 supports only general-purpose register access when harts are halted. All
other commands must be implemented by executing from the debug program buffer.

In the S76, both the program buffer and debug data RAM are general-purpose RAM and are
mapped contiguously in the Core Complex memory space. Therefore, additional data can be
passed in the program buffer, and additional instructions can be stored in the debug data RAM.

Debuggers must not execute program buffer programs that access any debug module memory
except defined program buffer and debug data addresses.

The S76 does not implement the *,- -., 8EP?8M<I<J<K or ~,- -., 8CC?8M<I<J<K bits.

2/A4 &$"" 0x800HOXFFF

This ROM region holds the debug routines on SiFive systems. The actual total size may vary
between implementations.
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2/A4 9.47 0x100HOx110 0x400HOX7FF

The flag registers in the debug module are used for the debug module to communicate with
each hart. These flags are set and read used by the debug ROM and should not be accessed
by any program buffer code. The specific behavior of the flags is not further documented here.

"2 -2>< 115277

In the S76, the debug module contains the addresses 0 through 0111 in the memory map.
Memory accesses to these addresses raise access exceptions, unless the hart is in debug
mode. This property allows a "safe" location for unprogrammed parts, as the default DKM<: loca-
tionis O .

2/A4 ""<1A%2 ;(2>3.02

The SiFive Debug Module (DM) conforms to The RISC-V Debug Specification, Version 0.13. A
debug probe or agent connects to the Debug Module through the Debug Module Interface
(DMI). The following sections describe notable spec options used in the implementation and
should be read in conjunction with the RISC-V Debug Specification.

"t &2467202>7
1:?20.0A? >246?(2>
;DJK8KLJ holds the DM version number and other implementation information. Most impor-

tantly, it contains status bits that indicate the current state of the selected hart(s).

1 - 0<;(><9 >246?02>

A debugger performs most hart control through the dmcontrol register.

<;0><9 A 0fb<;
;D8:K@M< This bit enables the DM and is reflected in the dmactive output signal.
When dmactive=0, the clock to the DM is gated off.
E;DI<J<K This is a read/write bit that drives the ndreset output signal.

1<J<K?8CKI<H | When set, the DM will halt the hart when it emerges from reset.
?281KI<J<K Not Supported

?81KJ<C This field selects the hart to operate on

?8J<C Not Supported

(.72 Debug Control Register
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/20000 <z z.;1?

Abstract commands provide a debugger with a path to read and write processor state. Many
aspects of Abstract Commands are optional in the RISC-V Debug Spec and are implemented
as described below.

0 - 14E=2 2.0A>2 " A==<>)
Access GPR registers Access Register command, register number 0 -
Register o 1
CSR registers Not supported. CSRs are accessed using the Program
Buffer.
FPU registers Not supported. FPU registers are accessed using the Pro-
gram Buffer.
Autoexec Both 8LKF<O<:GIF>9L= and 8LKF<0<: ;8K8 are sup-
ported.
Post-increment Not supported.
Core Register Not supported.
Access
Quick Not supported.
Access
Access Not supported. Memory access is accomplished using the
Memory Program Buffer.
(.72 Debug Abstract Commands
"E?02- A? 002??

System Bus Access (SBA) provides an alternative method to access memory. SBA operation
conforms to the RISC-V Debug Spec and the description is not duplicated here. Comparing Pro-
gram Buffer memory access and SBA:

W><4>. = AR2> ""2z<>E 00277 -
Virtual address

Subject to Physical Memory Protection (PMP)
Cache coherent

Hart must be halted

(/%2

""2-<>E 0027??
Physical Address

Not subject to PMP

Cache coherent

Hart may be halted or running

System Bus vs. Program Buffer Comparison
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==2;16D

==2;16D

This section lists the key configuration options of the SiFive S7 Series core. The configuration
for the S76 is listed in ;F:J :FI1<6:FDGC<06:FE=@>L18K@FE KOK.

" m2>627
The S7 Series comes with the following set of configuration options:
"r<12? ;1 T

» Configurable number of Cores (1 to 8). In the case where more than one core is
selected, all cores are configured the same.

e Optional support for RISC-V user mode
e Optional M, A, F, and D extensions
» Configurable Multiplication performance (1-cycle or 4-cycle)
» Optional SiFive Custom Instruction Extension (SCIE)
$; 56=""2:-<E

« Optional minimal Instruction Cache (256 B, 2-way), or Configurable Instruction Cache
size (4 KiB to 64 KiB) and associativity (2-, 4-, or 8-way)

« Optional Data Tightly Integrated Memory (DTIM) or Data Cache:

o |f DTIM, then configurable size (4 KiB to 256 KiB) and base address

- |f Data Cache, then configurable size (4 KiB to 256 KiB) and associativity (2-, 4-, 8-,
or 16-way)

« Optional Instruction Tightly Integrated Memory (ITIM) with configurable size (4 KiB to
512 KiB) and base address

» Optional Data Local Store (DLS) with configurable size (4 KiB to 512 KiB) and base
address
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« Optional L2 Cache with configurable L2 size (128 KiB to 4 MiB), associativity (2-, 4-, 8-,
16-, or 32-way), and banks (1, 2, or 4)

» Optional Fast I/O

%<>(?
» Optional Memory Port, System Port, Peripheral Port, and Front Port

o Each port has a configurable base address, size, and protocol (AHB, AHB-Lite,
APB, AXI4)

" 20A>60E
* Number of Physical Memory Protection registers (2 to 16)

2/A4
« Configurable debug interface (JTAG, cJTAG, APB)

« Number of Hardware Breakpoints (0 to 16) and External Triggers (0 to 16)
« System Bus Access enabled

« Configurable number of performance counters (0 to 8)

« Optional Raw Instruction Trace Port

« Optional Nexus Trace Encoder with the following options:

o Trace Sink (SRAM, ATB Bridge, SWT)
o QOptional Timestamp capabilities with configurable width and source
o External Trigger Inputs (0 to 8) and Outputs (0 to 8)
o Trace Buffer size (256 KB to 64 KB)
o Qptional Instrumented Trace
; 02>>A=(?
» Optional Platform-Level Interrupt Controller (PLIC) with the following parameters:
o Priority Levels (1 to 7)
o Number of interrupts (1 to 511)
» A configurable number of Core-Local Interruptor (CLINT) interrupts (0 to 16)
2?264; <> (220
e Optional SRAM Macro Extraction
» Optional Clock Gate Extraction
« Optional Grouping and Wrapping of extracted macros
%N<C2>"".;.42:-2;0
» Optional Clock Gating

» Separate Reset for Core and Uncore
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>_ ;05 %>216006< ;
» Configurable Branch Prediction (Area-Optimized, Performance-Optimized)

Note that the configuration may be limited to a fixed set of discrete options.
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Visit the SiFive forums for support and answers to frequently asked questions:
https://forums.sifive.com
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